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Abstract

In this work the growth of a Li electrode-electrolyte interface in the presence of an elastic prestress is studied. In
particular the focus is on Li-air batteries with a solid electrolyte, LIPON. Theoretical studies and experimental
evidence show that during the process of charging the battery the replated lithium adds unevenly to the electrode
surface. This eventually leads to dendrite formation as the battery is charged and discharged numerous times. This
study focusses on the deviation from flatness of the electrode and the surface Green’s function is also developed. It
was found that the theoretical formulation is in line with the literature.
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Introduction
A battery is an electrical device that converts chemical energy into

electrical energy. As in all electrochemical systems, a battery consists of
two electrodes separated by an electrolyte. An external, electronic
conductor wire connects the two electrodes and is used as a pathway
for electrons to flow and create the electric current. Due to their high
energy per unit mass, batteries have received extensive interest in the
recent decades. This fact makes their study and development in order
to fulfill the demands of current society.

Metal-air batteries are promising candidates for next generation
power sources due to their low cost, long shelf life, environmental
friendliness, and high energy density [1-3]. A typical nonaqueous
Li/O2 battery is composed of a Li-metal foil (negative electrode), a thin
solid lithium-ion conducting electrolyte membrane, and a high surface
area positive carbon electrode that is loaded with a catalyst; e.g., Mn,
Ni, or Co, for the Li/O2 reduction at the positive electrode [4-9]. The
cell is exposed to the atmosphere at the carbon positive electrode, but
is otherwise isolated from the environment. Oxygen from the
atmosphere is adsorbed onto the carbon electrode and is reduced in
the presence of the Li during battery discharge. The overall reaction is

2Li++O2
++2e- → Li2O2

Lithium compounds are widely used as an electrode material for
rechargeable batteries due to their high electropositivity and low
weight of lithium metal. During battery operation lithium at the
negative electrode gives up electrons to become Li+ which dissolves
into the electrolyte. This processed is reversed during the recharge
cycle, but the replated lithium adds unevenly to the electrode surface.
As the battery is charged and discharged, dendrites have observed to
grow from one electrode to the next through the electrolyte [10-14].
Dendrite formation can cause a short-circuit (electrons find an easier
path to move through the electrolyte and the voltage difference
diminishes to zero) and make the battery useless.

For definiteness this work concentrates on the solid-state electrolyte
lithium phosphorus oxynitride (Li3PO4N) LIPON for short. It is a
solid-state electrolyte which is far safer compared to other
conventional liquid flammable electrolytes that have been used in in
the past for lithium ion batteries [15-19]. LIPON is considered to be
one of the most promising electrolyte enhanced materials due to its
stability and sufficient ionic conductivity.

The Nearly Flat Electrode-Electrolyte Interface
This work attempts to estimate the dependence of the free-energy of

an idealized electrode-electrolyte system on a non-planar profile of the
interface. The profile is described as

z=h(x,y,t) (1)

In this representation, it is assumed the interface is shallow, thus
representable as a graph. The profile of the interface is described by
means of a height function h. In so doing Cartesian axes x and y span
the interface and z is traverse to it.

Consider the function g

g(x,y,z,t)=z-h(x,y,t) (2)

Then to leading order in ∇ℎ , the corresponding unit normal to the 
interface is given by� = ∇� = ∂�∂��1+ ∂�∂��2+ ∂�∂� �3 = − ∂ℎ∂��1− ∂ℎ∂��2+ 1�3 (3)

where ei is the standard basis.

Whereas the element of area is�� ∼ 1 + 12 ∇ℎ 2 ���� (4)
e planar interface is considered first and then modified to the

nonplanar case. In addition to the concentration and electrostatic
fields, the planar interface carries along an elastic field. This field is
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assumed to be a piecewise uniform and equilibrated prestrain field���* �, �  and residual stress field ���* (�, �) at zero Li+ concentration.

As a result, in the planar frame, for the electrolyte and solid
electrode���* = ���*� � > 0, (5)���* = ���* � � < 0, (6)���* = − ������ ���*� ≡ ���*� � < 0, (7)���* = − ������ ���* � ≡ ���* � � > 0, (8)��3*�− ��3* � = 0 � = 0. (9)

where ����� is the elastic moduli.

Thus, for the planar interface the elastic field consists of equilibrated
constant residual stresses in the electrolyte and the solid electrode.

However, the deviation from the planar profile modifies the elastic
field to leading order in ∇ℎ . The corresponding correction
displacement field u satisfies the problem,���, �� � = 0 � < ℎ �,�, � (10)���, �� � = 0 � > ℎ �,�, � (11)��3� � − ���*�+ ���� � ℎ,� � = �,�, � (12)���� � − ���* �+ ���� � ℎ,� � = �,�, � (13)�� 0 � ±∞ (14)

where, here and subsequently, Greek indices take values in {1, 2}
and���� � = ������ ���� � (15)���� � = ������ ���� � (16)

In order to fix the geometry, a change of variable is made�� �,�, �, � = �� �,�, � − ℎ �,�, � , � (17)
Two new relations are possible��,� = ��,�− ��, 3ℎ,� (18)��, 3 = ��, 3 , (19)
or,��� = ���− ��3ℎ,� ��� (20)
Hence��� � = ��� � − 12 ��, 3���+ ��, 3��� ℎ,� (21)
and��� � = ��� � − �������, 3ℎ,� . (22)

In this representation, the equilibrium problem becomes, to first
order,���, �� � = 0 � < 0 (23)���, �� � = 0 � > 0 (24)��3� (�)− ���*�ℎ,� = ��3� � − ���* �ℎ,� � = 0 (25)�� 0 � ±∞ (26)
The attendant change in elastic energy is���� =∫∼∫2 12��� � − �′ ∼∼ ���* ∼∼ ∼∼ ���* ∼∼ ℎ,� (�)ℎ,� �′ ����′ (27)
Where∼∼ ���* ∼∼ = ���*�− ���* � (28)
Is the jump in the residual stress tensor at the interface, and is the

interfacial Green’s function?

Results
Using Mathematica, the Green’s function matrix was found.2.8050 −0.64476 0.32652�−0.64476 2.8050 0.32652�−0.32652 −0.32652� 2.2303 (29)
This matrix is the displacement component in the xi-direction at

point x when a unit body force in the xk-direction is applied at point in
the infinity extended material. This result is in agreement with the
literature [20,21].
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