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ABSTRACT
Data growth is exploding in the era of big data. To maximise the value of data, data quality management has become 

crucial. Establishing a strategy for identifying the quality of scientific data is crucial and essential. Benford’s law has 

evolved into an effective tool for assessing data quality and spotting anomalous data across multiple sectors. Benford’s 

law is a digital analytic method that determines the probabilistic distribution of digits for numerous common 

phenomena. The fraud detection method uses deviations from the expected Benford’s law distributions as strong 

signs of fraudulent behaviour. The wire card fraud, which resulted in losses of several billion euros, is regarded as one 

of the most notable financial scandals of the decade. This paper examines the digit structure of Wire card’s financial 

figures from 2005 to 2019, financial figures of the bank of England, financial figures of the SEC’s Accounting and 

Auditing Enforcement Releases (AAERs), financial figures of publicly traded U.S. firms, sample financial data, and 

test data by analysing their conformity with the expected frequency distributions based on Benford’s law. The results 

indicate that small accounting fraud in large datasets cannot be identified using the Benford analysis of the first digits 

alone. This work still demonstrates how Benford’s law can be applied to small datasets with a high fraud count in 

accounting and auditing, hence introducing data analytic approaches for fraud detection. The future evolution of 

Benford’s law necessitates that academics from many disciplines conduct additional research on its foundation, 

strengthen its integration with other data processing technologies, and then broaden its application.

Keywords: Benford’s law; Probabilistic distribution; Financial data; Anomalous data; Auditing

Abbreviations: PwC: Price water house Coopers; BL: Benford’s Law; AAER: Accounting and Auditing Enforcement 

Releases; BoE: Bank of England; CSV: Comma-Separated Values

INTRODUCTION
In recent years, fraud has become widespread worldwide and in 
Slovenia. Businesses took advantage of the absence of norms and 
regulations to prevent and control accounting fraud. Soon after 
the major global crises, new fraud prevention and detection 
legislation, regulations, and guidelines emerged. Fraud typically 
results in a financial scandal caused by the intentional 
misrepresentation or misidentification of things or the 
inappropriate use of a company's assets. We live in an age where 
we are continuously bombarded with vast information. Daily, 

satellites orbiting the Earth send more data than the Library of 
Congress; researchers must quickly filter these data sets to 
identify the pertinent information. It is, therefore, not strange 
that researchers are fascinated by data patterns. Benford's law 
governing the distribution of the first or leading digits is 
intriguing and unexpected [1].

Benford's law is based on a recently established mathematical 
distribution of the frequencies of naturally occurring numbers, 
which can be employed effectively to detect financial fraud [2].

Research Article

Correspondence to: Rakshit Kaushik, Department of Computer science and Mathematics, Stanford University, Stanford, United States of 
America; E-mail: rakshitk@stanford.edu

Received: 23-Jun-2023, Manuscript No. IJAR-23-21928; Editor assigned: 26-Jun-2023, PreQC No. IJAR-23-21928 (PQ); Reviewed: 10-Jul-2023, 
QC No. IJAR-23-21928; Revised: 22-Jan-2025, Manuscript No. IJAR-23-21928 (R); Published: 29-Jan-2025, DOI: 10.35248/2472-114X.25.13.404

Citation: Kaushik R (2025) Using Benford’s law and RMSE to Predict Financial Fraud Using Firm-Reported Data. Int J Account Res. 13:404.

Copyright: © 2025 Kaushik R, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Int J Account Res, Vol.13 Iss.1 No:1000404 1



Benford's law, however, may "see through" these fictitious 
accounting entries and alert auditors to probable areas of fraud 
so that these can be explored further. Benford's law is based on 
the observation that naturally occurring number distributions 
are drastically distinct from artificially generated numbers, such 
as when sales transactions are artificially created to inflate 
revenue. Many accounting activities, such as individual sales or 
depreciation expenses, might exhibit naturally occurring 
distributions when minimum and maximum constraints are not 
imposed. Consequently, naturally occurring distributions in 
accounting and finance are best suited for applying Benford's 
law, which can reveal the presence of fictitious numbers 
indicating the possibility of fraud.

Given the preceding incentives for applying Benford's rule in 
accounting and auditing, this paper has a dual purpose: First, it 
describes the history and validity of utilizing Benford's law to 
find abnormalities in accounting statistics. Second, the practical 
implementation of Benford's law is presented using python 
scripts and a structured technique that accounting professionals 
can use to quickly discover number patterns that do not 
conform to Benford's law's expected distribution [8]. The given 
methodology will enable auditors and other accounting 
professionals to rapidly and efficiently flag numbers that require 
closer examination, establishing the basis for fraud investigation 
and analysis.

Auditors must examine several factors when using digital 
analysis to uncover fraud. First, on what kinds of accounts is 
Benford analysis likely to be effective? There are exceptions to 
the rule that most accounting-related data sets correspond to the 
Benford distribution. In addition, because the digital analysis is 
only successful when applied to conforming sets, auditors must 
examine whether a specific data set is likely to fit the Benford 
distribution before conducting a digital analysis. Second, under 
what conditions are digital analysis ineffective? In other words, 
are there fraud types that digital analysis cannot detect? Finally, 
how much assistance can auditors anticipate from Benford's law 
in identifying accounts for further inquiry that are suspect? This 
article examines Benford's law as an indicator of financial data 
fraud and provides solutions to the aforementioned questions 
[9].

Benford's law is a mathematical formula that determines the 
probability of data sets, including leading digit sequences. 
Benford's law is an example of a type of counterintuitive law. 
Some authors linked it to Newton's law of gravitation, stating 
that it is a simpler observation of reality than a mathematical 
result that can be demonstrated. Contrary to common sense, 
this law claims that lower first significant digits, often known as 
leading digits, occur more often than higher ones in natural 
occurrences. Under extremely generic settings, numbers are 
predicted to adhere naturally to the postulated pattern of digits. 
In addition, any variation from the Benford distribution could 
indicate an external alteration of the expected pattern resulting 
from data manipulation or fraud [10]. Benford's law can be 
utilized as a forensic accounting and auditing tool for financial 
data, as popularized by Nigrini's works among scholars and 
accounting professionals. Since then, it has been utilized as an 
advanced statistical tool for detecting fraud. In 1881, astronomer
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Contrary to intuition, the first digits of randomly picked data do 
not follow a uniform distribution but rather a pattern of 
logarithmic decline known as Benford's Law (BL). Benford's law 
applies to regression coefficients and standard errors in 
empirical economics. Despite the importance of Benford's Law 
for detecting fraud, most financial professionals are frequently 
uninformed of its existence and how to utilise it most effectively. 
Therefore, the goal of this study is to offer a way for 
systematically implementing Benford's law in order to discover 
and flag potentially fraudulent financial transactions that can be 
further probed. This paper explores the origins of Benford's law 
and demonstrates how it can be systematically implemented 
through Python software to detect probable fraud [3]. Benford's 
law has significant implications for identifying fraud, given the 
recently increasing high costs and a sharp rise in fraud. For 
instance, according to PwC's 2018 global economic crime and 
fraud survey, 49% of organisations globally acknowledged 
having been victims of fraud and economic crime, and 64% of 
respondents estimated that losses due to their most disruptive 
fraud might exceed $1 million. According to accountancy daily, 
the global fraud cost is nearly three trillion dollars. According to 
a recent analysis titled "the financial cost of fraud 2018" by 
Crowe Clark Whitehill, an international accounting firm, 
businesses lose up to ten percent of their yearly income to 
fraud. Given that organizations can lose up to ten percent of 
their revenues due to financial fraud, the methodology given in 
this paper for adopting Benford's law can be a valuable tool for 
auditors and other financial professionals attempting to detect 
fraud [4].

There are numerous benefits to examining the initial digits of a 
data set. This refers to the following: Two distinct datasets may 
have vastly different scales; one may represent the masses of 
subatomic particles, while the other may represent closing stock 
values. Despite the various units and magnitudes, each number 
has a unique beginning digit, allowing us to compare the 
distribution of the first digits of the two data sets [5].

Over the past fifty years, over 150 articles have been written 
about Benford's law. In the past decade, a subgroup of these 
papers has encouraged using this legislation as a straightforward 
and efficient method for auditors to find operational anomalies 
and uncover accounting fraud.

In recent years, Benford's law has seen a remarkable rise in 
popularity. Given that a collection of numbers is assumed to be 
Benford compliant under fairly generic conditions, it can be 
utilised in various applications that seek to uncover potentially 
manipulated numbers, such as anti-fraud investigations. 
Benford's law conformance statistical evaluation demands 
testing methodologies with desirable statistical features [6]. We 
seek a statistical test that reduces the number of false alarms and 
ensures a sufficient level of power, particularly for audits 
involving a large number of sample tests. When there are only a 
small amount of observations in the sample, the selection of the 
Benford compliance test becomes even more crucial [7].

The production of phoney accounting entries, such as 
the recording of fictitious sales transactions, is a typical 
method used by corporate management to conduct financial 
reporting fraud. Similarly, staff may try to misappropriate 
assets by submitting fraudulent cost claims. Both strategies 
depend on auditors' inability to distinguish between fictitious 
and actual transactions.
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and mathematician Simon Newcomb published in the
American Journal of Mathematics the first known article
describing what is now known as Benford's law. He discovered
that the opening pages of library copies of logarithms books,
which dealt with low digits, were significantly more worn than
the pages with higher digits [11]. This pattern led him to
conclude that fellow scientists used those tables to look up
numbers beginning with the numeral one more frequently than
those beginning with the numerals two, three, till nine.

The obvious conclusion was that more numbers exist which
begin with the numeral one than with larger numbers.
Newcomb calculated that the probability that a number has any
particular non-zero first digit is:

Where;

d=Number 1,2,3,4,5,6,7,8, or 9.

P=Probability of its distribution.

Using his formula, the probability that the first digit of a 
number is one is about 30 percent while the probability at the 
first digit is nine is only 4.6 percent. Table 1 below shows the 
expected frequencies for all digits 0 through 9.

Digit Expected frequency leading digit

1 0.30103

2 0.17609

3 0.12494

4 0.09691

5 0.07918

6 0.06695

7 0.05799

8 0.05115

9 0.04576

million. Therefore, New Zealand's population's leading or initial 
digit is 4. Due to the logarithmic distribution of the leading 
digits of integers, lower numbers such as 1 and 2 occur more 
frequently than more significant numbers such as 8 and 9. This 
result contradicts the intuitive notion that each numeral should 
occur in around 11% of occurrences (one out of nine possible 
numbers). Consequently, larger digits such as the number 9 are 
less likely to occur than earlier digits and do not occur 11% as 
frequently as expected. Given the high cost associated with fraud, 
accounting professionals can use a reliable and efficient method 
to apply Benford's law to flag questionable accounts and 
transactions [14]. Therefore, this work aims to give a structured 
methodology for applying Benford's law using Python, which 
accounting professionals may use to quickly flag accounts and 
transactions requiring additional inquiry. Nigrini demonstrated 
in 1994 that Benford's law might be utilised to detect deception 
or fraud. His research is based on the observation that 
individuals generate fake figures due to the aforementioned 
psychological conditions. He is also presumed to be the first 
researcher to completely implement and test Benford's law in 
financial statements to detect potential fraud. Hill noted in 1996 
that the accuracy of Benford's law in detecting accounting errors 
is questionable because it  produces numerous false positives. 
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Despite its extensive history, the mathematical and statistical 
issues posed by Benford's law have only been acknowledged. From 
a mathematical standpoint, appropriate law variants arise in 
integer sequences, such as the famed Fibonacci or factorial 
sequences. The law applies to floating point arithmetic as well 
[12]. Benford's law can now be utilised as a forensic accounting 
and auditing tool for financial data, largely thanks to the work of 
Nigrini. The law is a helpful starting point for forensic 
accountants and applies in various auditing scenarios, including 
external, internal, and government auditing. It has also 
successfully identified malfeasance in other areas, including 
electoral data, campaign funding, and economic data 
abnormalities. Benford hypothesised that he looked up the 
logarithms of lower-level numbers more often because there were 
more numbers with lower-level numerals in the world. In contrast 
to Newcomb, Benford investigated if his hypothesis was 
confirmed. He analysed data from numerous geographical, 
scientific, and demographic sources. His data included figures 
from 20 different lists, including around 20,229 observations. 
Benford's discovery was intriguing. He discovered that the leading 
digit number frequency distributions of various databases, such as 
city populations, death rates, and river drainage, were logarithmic 
rather than arithmetic [13]. The leading digit is the number's 
initial digit. For  example, New Zealand's  population is 4,746,880 
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If distributions are chosen randomly, and samples are drawn 
randomly from each distribution, then the significant digit 
frequencies of the combined samplings will converge to 
Benford's distribution, even if the individual distributions do 
not strictly adhere to the law. The secret is in combining 
numbers from various sources.

MATERIALS AND METHODS

Import the data

AAER_firm_year.csv

data_FraudDetection_JAR2020.csv

dummyFInancialData.csv

englandUnfiltered.xlsx

JA_2005-2012.csv

JA_2013-2018.csv

Q1_2005-2012.csv

Q1_2013-2019.csv

Q2_2005-2012.csv

Q2_2013-2019.csv

Q3_2005-2012.csv

Q3_2013-2019.csv

Clean the data and create some test data so that it 
can be used in the code

Make a single column.csv file so the program can read all the 
numbers.

AAER_firm_year_filtered.csv

arizonaFraud.csv

dummyAmount.csv

dummyOldAccount.csv

englandFiltered.csv

JA2005.csv

JA2013.csv

Q12005.csv

Q12013.csv

Q22005.csv

Q22013.csv

Q32005.csv

Q32013.csv

testdata.csv

testdata2.csv
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This means that specific misleading results could prompt 
additional costly inquiries. Nigrini supports his definition by 
arguing that the digital analysis of Benford's rule provides a 
solid foundation for distinguishing suspicious data with a 
high degree of manipulation from data with a meagre chance 
of manipulation, which is crucial for subsequent analyses. 
Benford's law has gained prominence in auditing and forensic 
accounting over time. Benford's law was not 
acknowledged as a forensic accounting tool for detecting 
suspected fraud until 1990. Today, Benford's law, as an analytical 
approach, is one of the most widely used digital procedures and 
provides a distinctive method for data analysis. Benford's law 
enables forensic accountants to uncover accounting data fraud, 
manipulation, and other problems. Testing compliance with 
Benford's law for authentic digits transfers the detection 
emphasis from individual transactions to the entire data set 
from each trader. To apply equation 1 as a test for the digit 
frequencies of a data collection, Benford's law requires that each 
dataset entry contain values of comparable phenomena. In S, 
the data cannot comprise entries from two distinct phenomena: 
Population census records and dental measures. There should 
be no minimum or maximum values predefined within the data 
set. In other words, the records for the phenomenon must be 
complete, with no contrived beginning or end values. The 
dataset should not contain allocated numbers such as telephone 
numbers. The data set should have more entries with tiny values 
than large ones. In real applications, many data sets cannot meet 
all four criteria mentioned above. Benford's law does not apply 
to data that does not form organically, including house number, 
lottery number, telephone number, date, and weight. As shown 
in the research compiled by Benford in his research paper in 
1938.

Although the mathematical proof is unnecessary for this 
explanation, the law is intuitively straightforward to grasp [15]. 
Consider a company's market value. If the amount is
$1,000,000, it must double in size before the first number 
becomes a "2," or expand by 100 percent. For the initial digit to 
become a "3," it need only increase by 50 percent. To be a "4", 
the company only increased by 33%. In many distributions of 
financial data, which indicate the amount of everything from a 
purchase order to stock market returns, the digit one is far 
further from two than the digit eight is from nine.

Consequently, the empirical evidence indicates that smaller 
values of the first significant digits are significantly more likely 
than bigger ones for these distributions. Since over ninety years 
ago, mathematicians and statisticians have provided numerous 
explanations for this occurrence [16]. Raimi's 1976 article 
includes a variety of less rigorous theories, ranging from 
Goudsmit and Furry's notion that the phenomenon is the 
product of "the way we write numbers" to Furlan's theory that 
Benford's law reflects a profound "harmonic" reality of nature. 
Hill, a mathematician, did not produce a proof for Benford's law 
and illustrate its application to stock market data, census 
information, and accounting data until 1995. Like the normal 
distribution, Benford's distribution is an experimentally 
observable occurrence, he emphasised. Hill's demonstration 
relies on the fact that the distributions of the numbers in sets 
that adhere to the Benford distribution are second generation 
distributions or composites of other distributions [17]. 
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square=(given[i] -assume[i])*(given[i] - assume[i])

error += square

final_error=error/9

final_error_root=np.sqrt(final_error)

final_error_root_str=str(final_error_root)

p1 = plt.bar(ind, benford_means, width)

p2 = plt.bar(ind, data_means, width, bottom=benford_means) 

plt.ylabel('Percentages')

plt.title("Benford law analysis with error "+final_error_root_str)

plt.xticks(ind, ('1', '2', '3', '4', '5', '6', '7', '8', '9', '|', '1', '2', '3', '4', '5', 
'6', '7', '8', '9'))

plt.yticks(np.arange(0, 40, 2.5))

plt.legend((p1[0], p2[0]), ('Benford\'s', 'Our Data'))

plt.show()

csv_list=read_csv('filename.csv')

first_digit_list=get_first_digit(csv_list)

first_occurrence_dict=assign_first_digits(first_digit_list)

digits_percentage_dict =
digits_percentage(first_occurrence_dict, len(first_digit_list))

show_graphs(digits_percentage_dict, benford_law)

Chart the actual count to the expected count of
leading digits

Figures 1 and 2 with test data show that the model works and
give expected error values.

Figure 1: Test data.
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Write a code which can show digit distribution and 
calculate root mean square error

The python script I wrote for the analysis.

import csv

import numpy as np

import matplotlib.pyplot as plt

benford_law={1:30.1, 2:17.6, 3:12.5, 4:9.7, 5:7.9, 6:6.7, 7:5.8, 

8: 5.1, 9: 4.6}

def read_csv(path):

all_values=[]

data=open(path, encoding="utf-8")

csv_data=csv.reader(data)

for num in csv_data:

all_values.extend(num)

return all_values

def get_first_digit(values_list):

first_digits=[]

for num in values_list:

first_digits.append(int(str(num)[0]))

return first_digits

def assign_first_digits(digits_list):

amount_first_digits={}

for i in range(1, 10):

amount_first_digits(i)=digits_list.count(i)

return amount_first_digits

def digits_percentage(digits_dic, lengt):

first_digits_percentage={}

for i in range(1, 10):

first_digits_percentage[i]=(float(digits_dic[i])/lengt)*100

return first_digits_percentage

def show_graphs(assume, given):

n=19

data_means=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, assume [1] assume[2], 
assume[3], assume[4], assume[5], assume[6], assume[7], assume[8], 
assume[9])

benford_means=(given[1], given[2], given[3], given[4], given[5], 

given[6], given[7], given[8], given[9], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

ind=np.arange(n)

width=0.50

error=0

for i in range(1, 10):

Int J Account Res, Vol.13 Iss.1 No:1000404 5



Figure 2: Test data 2.

Figures 3 to 10 with the large data sets of Wirecard with small
frauds moderately follow Benford’s law showing small error
values although not fitting the distribution closely.

Figure 3: JA2005.

Figure 4: JA2013.

Figure 5: Q12005.

Figure 6: Q12013.

Figure 7: Q22005.

Kaushik R
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Figure 8: Q22013.

Figure 9: Q32005.

Figure 10: Q32013.

Figure 11 shows the distribution of Bank of England’s (BoE)
data with 3.07 error, showing that the data might have some
inaccuracies as it is hundreds of years old.

Figure 11: England filtered.

Figures 12 and 13 show the distribution of dummy data. Figure
12 shows high error as there is a high amount of 0 values in the
dataset. Figure 13 follows close relation to the Benford’s
distribution.

Figure 12: Dummy old account.

Figure 13: Dummy amount.

Figures 14 and 15 show the distribution of Fraud data sets. Both
show high errors as they do not follow Benford’s law. Thus the
program is able to determine the fraudulent data.

Kaushik R
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Figure 14: AAER firm year filtered fraud.
Nelson was found guilty of trying to cheat the state of $2 
million, as depicted in Figure 15. Nelson, a manager in 
the Arizona state treasurer's office, asserted that he diverted 
funds to a fictitious vendor to demonstrate the lack of 
safeguards in a new computer system. Below are the dollar 
values of the 23 bogus checks (Table 2).

Date Amount

October 9 $1,927.48

27,902.31

October 14 86,241.90

72,117.46

81,321.75

97,473.96

October 19 93,249.11

89,658.17

87,776.89

92,105.83

79,949.16

87,602.93

Kaushik R
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96,879.27

91,806.47

84,991.67

90,831.83

93,766.67

88,338.72

94,639.49

83,709.28

96,412.21

88,432.86

71,552.16

Total $1,878,687.58

RESULTS AND DISCUSSION
The lack of accurate fraud records poses a significant obstacle to 
fraud detection. "Benford's law can act as a highly effective 
indicator of data error or fraud in accounting information," and 
"Benford's law can serve as an effective indicator of data 
problems in accounting information."

Nonetheless, there are two concerns: One intuitive and one 
statistical. First, intuitively, a significant difference will not be 
triggered if there are only a few fraudulent transactions, even if 
the total dollar amount is significant. Statistically, if the account 
being tested has many transactions, a smaller proportion of 
varying numbers will be required to indicate a significant 
deviation from the norm than if the account had fewer 
observations [19]. This is why many prepackaged programs, such 
as Benford's law based analytical test, urge auditors to test the 
entire account instead of taking a sample. Consider two 
accounts to illustrate the second point: One contains 10,000 
transactions while the other contains only 1,000. If all 10,000 
transactions in an account are used, a minimum difference of 75 
transactions is required for a high error value. This represents 
a 0.75 percent share of the entire account. 

In contrast, there would need to be 23 fraudulent entries (or 
2.3% deviant entries) in the 1000 entry account before the error 
value is displayed. If a sample of 200 entries were selected, there 
would need to be six deviant entries or 3 percent for it to be 
statistically different than expected. Even though fraud data 
exists, the error rate is low even for our massive dataset of 
Wirecard information. In the case of Arizona or AAER firm 
data, however, where the dataset size is small, fraud data can be 
easily predicted.
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Since no services were ever rendered, Nelson must have made 
up all the numbers in his system, and because individuals are 
not random, it is improbable that manufactured numbers will 
adhere to Benford's law. There are various indications that the 
numbers in Table 2 are fictitious. First, Nelson began with 
modest amounts, and then he increased them. The increases 
were substantial, at least up to the $100,000 mark. The majority 
of the payments were barely below $100,000. It is feasible that 
checks written for sums exceeding $100,000 might require 
human signatures rather than being written automatically. 
Benford's law and the digit patterns of check amounts are almost 
inverses. Over ninety percent of the amounts begin with a 7, 8, 
or 9 if each vendor was compared to Benford's law, this group of 
figures would have had a low degree of conformance with the 
law.

The numbers appear to have been chosen in a random manner. 
There were no duplicate check amounts, no round numbers, 
and all check amounts included cents. However, the boss 
subconsciously repeated certain digits and digit combinations. 
When examining the first two digits of the fictitious figures, 87, 
88, 93, and 96 were all utilized twice. For the final two digits, 
the numbers 16, 67, and 83 were replicated. There was a 
substantial bias toward the higher digits in general (i.e., 
regardless of where the digit appeared in the number), with 
digits 7 through 9 being the most common. 160 digits were 
utilized in the 23 numerals. The ten digits from 0 to 9 have 
corresponding counts of 7, 19, 16, 14, 12, 5, 17, 22, 22, and 26. 
These supposedly "random" numbers did not adhere to 
Benford's law and would have warranted a review as a result. 
Nelson was freed from an Arizona state institution after 
completing three years and four months of his five years prison 
sentence [18].
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In addition, there are other types of fraud that cannot be 
detected by Benford analysis because the examined data sets are 
unsuitable for such an analysis. For instance, duplicate addresses 
or bank accounts cannot be detected, but two employees with 
similar addresses may indicate ghost employees, or an employee 
whose address is a vendor's address may indicate a shell 
company. In addition, duplicate purchase orders or invoice 
numbers may indicate fraudulent payments or shell companies. 
In addition, Benford analysis does not detect contract 
manipulation, defective deliveries, or defective shipments. The 
question of what additional tests could supplement Benford's 
analysis arises [20]. This arsenal consists of personal 
observations of assets, external verification, a keen awareness of 
corporate culture, knowledge of the examined firm's 
performance relative to others in the industry, and a healthy 
scepticism toward management explanations of deviations in 
their records.

CONCLUSION
Benford’s law was a good tool to predict errors in small datasets. 
However, as the size of the dataset increased, Benford’s law 
started losing utility as a fraud detector. Therefore, we do not 
view our methodology as the ultimate anti-fraud tool but rather 
as a robust procedure that should be supplemented with 
additional data. We endorse the integration of our method's 
signals with those derived from alternative statistical techniques 
and less technical model free analyses that can be applied to a 
limited number of traders. We view our method as a suitable 
automatic tool for selecting the most intriguing cases for 
additional qualitative and quantitative research while 
maintaining control over the statistical properties of the selected 
tests.

Is Benford's law effective for detecting fraud in statistical and 
scientific data reports? The probability of "false positives" and 
"false negatives" must be low for a test to be valid. Nevertheless, it 
is highly questionable whether the Benford distribution is 
suitable for distinguishing between manipulated and un-
manipulated estimates. Additional research should concentrate 
more on the test's reliability, and test results should be 
interpreted more carefully. Given the low accuracy of tests in the 
application of Benford's law, the related research focuses 
primarily on enhancing three aspects: The scope of the test, the 
combination with other models, and the analysis of test results.

ETHICS APPROVAL AND CONSENT TO
PARTICIPATE
Not applicable.

CONSENT FOR PUBLICATION
Not applicable.

AVAILABILITY OF DATA AND
MATERIAL
The datasets generated and/or analysed during the current study 
are available in the Github repository, https://github.com/
rakshit271205/LS190RakshitKaushik.git.

Int J Account Res, Vol.13 Iss.1 No:1000404

10

https://publications.aaahq.org/accounting-review/article-abstract/77/s-1/35/2660/The-Quality-of-Accruals-and-Earnings-The-Role-of?redirectedFrom=fulltext
https://publications.aaahq.org/accounting-review/article-abstract/77/s-1/35/2660/The-Quality-of-Accruals-and-Earnings-The-Role-of?redirectedFrom=fulltext
https://www.jstor.org/stable/3203324
https://www.jstor.org/stable/3203324
https://publications.aaahq.org/accounting-review/article-abstract/87/6/1939/3471/Analysts-Motives-for-Rounding-EPS-Forecasts?redirectedFrom=fulltext
https://www.jstor.org/stable/2246134


17. Nigrini M. Benford’s law: Application for forensic accounting.
Auditing and Fraud Detection John Wiley and Son.
2012;6:109-129

18. Owens E, Wu J, Zimmerman J. Business model shocks and
abnormal accrual models. SSRN Electronic J. 2013.

19. Papanikolaou NI, Grammatikos T. Using BenFord’s law to detect
fraudulent practices in banking industry. J Appl Finan Bank
Practi.

20. Sweet P. Global cost of fraud tops £3 trillion. Accountancy Daily.
2018.

Kaushik R

Int J Account Res, Vol.13 Iss.1 No:1000404 (MRPFT) 11


	Contents
	Using Benford’s Law and RMSE to Predict Financial Fraud Using Firm-Reported Data
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Import the data
	Clean the data and create some test data so that it can be used in the code
	Write a code which can show digit distribution and calculate root mean square error
	Chart the actual count to the expected count of leading digits

	RESULTS AND DISCUSSION
	CONCLUSION
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIAL
	COMPETING INTERESTS
	FUNDING
	AUTHOR’S CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES




