

Using 3D High-Content Analysis and Epigenetic Phenotyping of Cells in the Characterization of Human Prostate Tissue Heterogeneity

Jian Tajbakhsh*and Kolja Wawrowsky

Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA, USA

*Corresponding author: Jian Tajbakhsh, Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA, USA, Tel: +1 310-423-3277; E-mail: tajbakhshj@cshs.org

Rec date: Mar 27, 2015; Acc date: Mar 30, 2015; Pub date: Mar 31, 2015

Copyright: © 2015 Tajbakhsh J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Clinical Image

Next-generation 3D high-content imaging and analysis enables the quantification and display of tissue heterogeneity regarding subcellular properties, and hence will improve the diagnostic characterization of biopsied tissues. (**Upper left**) Needle-biopsy section of human prostate adenocarcinoma, immuno-labeled for global DNA methylation (5methylcytosine, false-colored green) and counterstained for global nuclear DNA with 4',6-diamidino-2-phenylindole (DAPI, false-colored blue) and imaged with a 20X NA=0.7 lens. (**Upper right**) 3D reconstruction of a stack of confocal images taken from the boxed region (left sub-image with a 63X NA=1.3 lens, and processed using maximum intensity projection combined with shadow projection (CytoFx software, llucida LLC). (**Lower left**) Classification (phenotyping) of cells according to the levels of global nuclear DNA methylation using dedicated software; high (cyan) and mid levels (red) found predominantly in the epithelial-ductal cells, and low levels (blue) in stromal cells. (**Lower right**) 3D visualization of the classified heterogeneous cell population. Scale bars are 50 µm.