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Microbial mats are complete ecosystems on a millimeter scale 
that harbor diversified metabolic processes [1-5]. In the upper most 
layer, photosynthesis is the dominant process because of light, 
while fermentation and methane production are the most abundant 
metabolism in the deepest layer [6,7] because of absence of both O2 
and light. On the metabolic level, this is indeed comparable to other 
ecosystems that expand to meters scale such as the marine water 
column and rainforest [8]. Thriving in extreme habitat (i.e., extreme 
temperature, high salinity, extreme alkalinity, etc.) is another interesting 
characteristic that distinguishes microbial mat ecosystem from other 
complete ecosystems. Apparently, the microorganisms in microbial 
mat are successful in combating these extreme conditions because 
they are equipped with unique metabolic capabilities and flexibility. 
For example, cyanobacteria, which is a ubiquitous biotic component 
of microbial mats, can switch its metabolism from performing 
photosynthesis under light availability to aerobic respiration under the 
absence of light. In addition, cyanobacteria has the ability to perform 
fermentation under the absence of both oxygen and light [9,10]. The 
metabolic flexibility or persistence of cyanobacteria to suit changes to 
their dynamic environment explains why they confer fitness advantage. 
Comparative genomics of different strains of cyanobacteria indicate 
that they are capable of retaining or shredding genes which improves 
microbial fitness. 

Most of the studies on microbial mats either investigated the 
behavioral response of their biotic component [11-13], or measured 
physicochemical indicators such as O2, H2S, pH, and production of 
Extracellular Polymeric Substances (EPS) [14,15]. Others investigated 
the shift in microbial community structure using basic molecular 
biology techniques or high-throughput sequencing [16,17]. Stronger 
hypotheses and conclusions are derived from studies that use 
complimentary approaches to study microbial mats [18,19]. However, 
these studies have missed an important jigsaw to the puzzle as previous 
research so far is underestimating the metabolic capabilities of each 
microorganism living in the microbial mats. This knowledge gap can be 
filled by combining measurements in response to the dynamic changes, 
together with omics approach (metagenomics, metatranscriptomic, 
metaproteomic, and metabolomics).

So far, there have been limited studies that adopted this 
multipronged approach. Subsequently, the results of these studies were 

very interesting as they have revealed new metabolic possibilities for 
some of the microorganisms in the microbial mats. Recently, Stuart 
et al. [20] used a suit of techniques that includes, but not limited to, 
cell culture, 13C-labeling combined with NanoSIMS analysis, EPS 
separation, detailed biochemical and sugar analysis, and proteomic 
analysis to conclusively show that cyanobacteria is utilizing the EPS. 
This interesting finding expands our knowledge about the metabolic 
flexibility of cyanobacteria and it extends the list of the carbohydrate 
that they can consume. Such result wouldn’t be clear and well-
supported if there was no support from proteomic analysis showing the 
expression of EPS degrading enzymes that are cyanobacteria-specific 
enzymes. 

Rajeev and his colleagues [21] investigated the biological desert 
crusts (BDC) and used combined microsensor measurements of 
photosynthesis and time-series transcriptional analysis after rewetting 
the dried crust. Their ultimate goal was to understand how cyanobacteria 
can reactivate its photosynthetic activity. They have shown that 
cyanobacteria can retain its photosynthetic activity in one hour and 
this was correlated with raising the anabolic activity of cyanobacteria 
as shown from their transcriptome. This study provided insight into 
retaining photosynthesis after rehydrating the BDC, but overlooked 
the fast resynthesis of chlorophyll (Chl). This important question about 
rapid Chl synthesis in response to rehydration has been raised recently 
from the work of Chennu et al. [13]. In their study, Chennu and his 
colleagues were able to detect Chl, using combination of HPLC and 
hyperspectral imaging, in a matter of minutes after rehydrating dried 
marine microbial mat. In their study, they pointed out that there is a 
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need to conduct proteomic analysis to show if cyanobacteria retain the 
Chl in an inactive form when the mat is dehydrated or if they are able 
to retain precursor(s) of Chl synthesis.

All of these interesting studies and research questions that are 
still open can be best approached by conducting complimentary 
approaches that show measurements correlated with transcriptomic or 
proteomic analysis. This combined approach will allow the discovery 
of novel metabolic capabilities and may help to discover new enzymes 
that might have very important biotechnological applications.
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