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Few fields of science have known such a rapid and global 
development as what has been seen in stem cell research over the 
past decade, with a growing number of quality publications such as 
this Journal. Promises of cures have fueled research at all levels, by a 
vast number of scientific and clinical teams worldwide. The general 
approach includes isolation [1-3], proliferation [4], pre-conditioning 
[5-7], and then injection either in an artery, a vein, or in the tissue itself.
However, given the fact that the vast majority of stem cell treatments 
available in various clinics worldwide merely consist in injecting stem 
cells in the bloodstream without pre-conditioning, thereby simply 
increasing the number of circulating stem cells, one question remains 
conspicuously absent from the stem cell discussion: what is the natural 
role of endogenous stem cells?

Growing literature points to the fact that endogenous stem cells 
essentially constitute the natural repair system of the body. A few hours 
after acute myocardial infarction (AMI), the cardiac tissue releases 
G-CSF [8], a known stem cell mobilizer. As its concentration slowly
increases in the bloodstream, G-CSF triggers the mobilization of bone
marrow stem cells, increasing the number of peripheral blood stem cells 
which peaks at around 4-7 days after AMI [8]. The same phenomenon
has been documented after skin burn [9], bone fracture [10] and stroke 
[11]. Then following a signal from the affected tissue, circulating stem
cells migrate in the tissue where they differentiate in cells of that tissue, 
participating to the process of tissue repair [12].

However, there is an inherent bias in medical research; we study 
diseases, rarely health, so this is a phenomenon that has been essentially 
documented as part of an effort to study potential treatments to 
debilitating diseases. Yet, a number of studies have revealed that this 
phenomenon also takes place to a lesser extent, day to day, without 
the presence of an injury. These observations have essentially come 
from studies or human treatments involving sex-mismatch organ or 
bone marrow transplants. For example, Krause et al. [13] reported 
that 11 months after injection of male stem cells in female mice, 
Y-chromosome bearing cells were found in various tissues including
the liver, muscle, skin, lung, and intestine.

In humans, cardiomyocytes of extracardiac origin have been 
identified in hearts of patients undergoing sex-mismatched cardiac 
transplantation [14]. Similar observations have been made in women 
after sex-mismatch bone marrow transplant, showing a positive 
relationship between chimerism in the heart and length of time 
after transplant, without cardiac injury, suggesting a steady-state 
recruitment of marrow progenitor cells rather than an initial seeding 
event early after transplantation [15]. In the absence of tissue injury, 
after sex-mismatch bone marrow transplant, biopsy specimens from 
all female recipients showed chimerism that reached as high as 5% 
in the liver after 13 days, 2% in the skin after 19 days, and 6% in the 
gastrointestinal tract after 60 days [16]. 

It has been estimated that a normal person loses annually 
approximately 7 million cardiomyocytes and yet the number of 
cardiac cells remains relatively stable from childhood to adulthood, 
we can therefore conclude that approximately 15% of the heart has 

been renewed when a healthy adult reaches 40 years of age. Similar 
estimates have been obtained by Bergman et al. [17] who quantified 
C14 in the DNA of human cardiomyocytes. C14 concentrations in the 
atmosphere increased sharply after the beginning of above-ground 
nuclear bomb tests and then dropped exponentially after the Limited 
Nuclear Test Ban Treaty of 1963, with atmospheric C14 levels being 
well documented. Since carbon is incorporated in the DNA at the 
time of cellular division, the concentration of C14 in DNA can be used 
retrospectively to date the birth of human cells. Using this approach, 
Bergman et al. concluded that it takes roughly 25 years to renew about 
half the human heart. 

Although data is not available in humans, it has been reported in 
mice that up to 3% of new insulin-producing pancreatic β cells are 
formed every few days [18]. Other studies suggested that the liver 
renews itself at a rate of approximately 0.16% per day [19] and the lung 
at 0.07% per day [13]. Therefore, in theory, we would have on average 
a new pancreas and a new liver every few years, new lung every 4 years, 
as well as significant renewal of the heart and brain over one’s lifetime 
[20].

The current data does not allow for the precise determination of 
each organ’s turnover rate, nevertheless this simple observation brings 
forth a novel understanding of disease formation. While the general 
understanding is that most degenerative diseases result from the loss 
of a specific type of cells (pancreatic β-cells for diabetes, dopaminergic 
neurons in Parkinson’s disease, cone cells in macular degeneration, 
pneumocytes in the lung, etc.), we can see that a healthy 40 year old 
adult may have lost and replaced his liver more than 10 times, his 
pancreas and lung more than 8 times, and yet this person is still healthy 
without diabetes, liver failure or COPD. Therefore, the loss of cells is 
not the cause of disease formation; diseases result from a decline in the 
ability to self-renew which overtime leads to an overall cellular deficit 
in a tissue. Health is a balance between cellular loss and tissue renewal 
and diseases develop when the rate of cellular loss exceeds the rate of 
stem cell-based tissue renewal. 

This view is supported by a number of recent studies linking the 
development of various degenerative diseases with a lower number 
of circulating stem cells. For example, a linear relationship has been 
documented between the number of circulating stem cells and the 
various phases of diabetes development, namely impaired fasting 
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glucose, impaired glucose tolerance and insulin-dependent diabetes 
[21].  Similar observations have been made with cardiovascular diseases 
[22], atherosclerosis [23], Alzheimer’s disease [24], rheumatoid 
arthritis [25], pulmonary diseases [26], erectile dysfunction [27], and 
muscular dystrophy [28].

Therefore, it appears that a decline or failure of endogenous 
repair might be the underlying cause for the development of various 
degenerative diseases, and consequently supporting endogenous repair 
by enhancing stem cell mobilization, circulation and migration into 
tissues could constitute a novel approach in healthcare.
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