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The era of astonishing amounts of sequencing data is upon us.
Current sequencing efforts that aim to discover the mutation burden
in cancer, or other diseases, result in vast quantities of information
that present key indicators for disease prognostic and driving forces,
including acquired point mutations, loss of heterozygosity, missense
and nonsense mutations. The key determinant for how this information
can be usefully applied is to understand which alterations between
normal and diseased cells are ‘driving’ the condition. Therefore
provision of a clear molecular and functional basis for disease
acquisition and progression will prove to be essential for development
of future therapies.

Current and ongoing sequencing efforts for cancer and other
diseases result in significant amounts of data. For example, sequencing
efforts for melanoma can result in the patient mutation burden
ranging from tens to thousands of acquired, expressed, somatic point
mutations [1]. This clearly raises the questions “What mutations
are important?” and “How can these data be used to discover new
genomic-based therapeutics?” In the case of melanoma, mutations in
BRAF are associated with approximately 50% of cases and result in
an activated protein [2,3], a finding that proved to be the key insight
towards development of a BRAF-targeted small molecule, PLX4032
(Vemurafenib) that is now in clinical use [4] and is a definitive advance
in melanoma treatment [5]. There is, however, no other single mutated
gene to account for the remaining 50% of melanoma cases. Instead,
mutations in multiple genes including NRAS, KIT, MAP2K1 and
TRRAP, and an exciting mutation that has been recently discovered
in RAC1 [1], all seem to be associated with, and maybe drive the
melanoma. Clear understanding of the function of these proteins,
their normal regulation mechanisms, the effect of mutations on their
regulation, and how mutations impact signaling pathways are all
needed to provide a rational basis to develop targeted therapeutics.

There is a significant amount of information known for how
RACI, a small GTPase, is regulated, and what the downstream effector
molecules are [6]. Even so, however, the direct consequences of the
newly discovered Proline-29 mutation to Serine in melanoma were
not known. The first hint that this mutation could impact the activity
of RACI was the discovery, by structural mapping to previously
determined RACI crystal structures, that Proline-29 is located on the
Switch I loop, a region that is functionally critical for small GTPases
(Figure 1). Using an array of biochemical, cell biological and X-ray
crystallography techniques, combined with existing knowledge for this
protein, we are beginning to understand the impact of the melanoma-
associated P29S mutation [1]. Interestingly, RAC1 may act as a node,
with acquired mutations observed both upstream and downstream
[1]. Therefore, although a full understanding of the functional
consequences of this mutation will take a significant effort, there is
increasing evidence suggesting that the RACI signaling pathway may
be important for a portion of melanomas. Whether the discovery of
RACI mutations can translate into a pathway-specific therapy to treat

melanoma is not yet clear, however, the already large amount of data
accumulated to understand the role of dysregulated RACI indicates the
enormity of the task ahead; to move from sequencing data to targeted
therapies.

In the case of RACI, structural mapping of the mutation provided
clear rationale to guide further studies, and our crystallographic studies
then discovered significant conformational differences between wild-
type and mutated protein in a functionally important part of RACI,
again suggesting the importance of the P29S mutation. The structural
studies provided rationale, initial insights to potential importance,
and aided hypothesis generation. Indeed, we find that mapping
of recurrent acquired mutations to previously determined crystal
structures, or homologous neighbours, can frequently aid the process
of understanding the acquired mutations, can facilitate hypothesis
generation, and can help triage these vast amounts of data. This can be
especially useful when mutations occur in clear functionally important
regions of an enzyme or signaling protein, for example the Switch

Figure 1: Structure of RAC1 indicating the location of the P29S mutation. Crystal
structure of wild-type RAC1 is shown with GTP analogue, GMP-PNP shown in
stick format, the Switch | loop colored green and Proline-29 shown as a sphere
in red. PDB ID: 3TH5.
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regions of a GTPase (e.g. RAC1[1]), the activation loop of a kinase
(e.g. EGFR [7]), or other known enzyme regulatory regions [8-14].
Furthermore, structural mapping can allow hypothesis generation for
the effects of post-translational modification discovered by proteomic
techniques [15,16]. The use of structural biology techniques in this way
can sometimes provide the desired clear molecular and functional basis
for altered activity, a key step in moving towards a Pharmacogenomics-
based therapy. Therefore, as this era of extremely large databases
of disease-associated mutations rapidly encompasses us, there is
increasing importance and relevance for the tools of the structural
biologist to facilitate rapid transition from sequencing to targeted
therapeutics.
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