

Two Unexpected Cases of Rosacea during Fingolimod Therapy

Brusco S¹, Bertini M¹, Scavone C¹, Docimo R², Biscecco A³, Capuano A¹ and Gallo A³

¹Department of Experimental Medicine, Campania Regional Center of Pharmacovigilance and Pharmacoepidemiology, University of Campania, Luigi Vanvitelli, Naples, Italy

²Division of Neurology, Department of Medical, Surgical, Neurologic, Metabolic and Aging Sciences, University of Campania, Luigi Vanvitelli, Naples, Italy

³MRI Research Center "SUN-FISM", University of Campania, Luigi Vanvitelli, Naples, Italy

Abstract

Fingolimod is the first orally bioavailable disease modifying agent approved for the management of relapsing-remitting multiple sclerosis (RRMS). Even though it is generally well tolerated, it requires a specific monitoring due to its first-dose and long-term toxicity. Although some of the skin adverse events drug-related may be severe, the most frequently reported are non-serious such as alopecia, eczema and pruritus.

In this context, we describe two unexpected cases of fingolimod-induced rosacea occurred in two patients with MS in real life context. A 48-year-old Caucasian woman and a 27-year-old Caucasian male developed rosacea few days after starting treatment with fingolimod. After discontinuation of the treatment the lesions quickly resolved. Fingolimod represents one of the most commonly prescribed medications in patients with multiple sclerosis (MS), nevertheless its safety profile is still not completely known. Our cases contribute to the current knowledge on fingolimod safety profile. Further studies are needed to confirm the link between this drug and rosacea.

Keywords: Fingolimod; Multiple sclerosis; Rosacea; Safety

Abbreviations: ADR: Adverse Drug Reaction; AE: Adverse Event; DMD: Disease Modifying Drug; MS: Multiple Sclerosis; RRMS: Relapsing-Remitting Multiple Sclerosis; S1P: Sphingosine 1-Phosphate

Introduction

Disease modifying drugs (DMDs) are the most widely prescribed drugs for the treatment of Multiple Sclerosis (MS) [1]. Among them, fingolimod is the first orally bioavailable compound approved for the treatment of adult patients with relapsing-remitting MS (RRMS). It is generally well tolerated but requires a specific monitoring due to its toxicity. Adverse events (AEs) of special interest include bradycardia, atrioventricular-block, infections, liver enzymes elevation, hypertension, thromboembolism and macular edema [2]. Although skin AEs may be severe such as melanoma basal cell carcinoma and other malignant neoplasms, the most frequently reported are non-serious and include alopecia, eczema and pruritus. Even though it represents until now one of the most prescribed drug for MS, its safety profile is still not completely known. Data from literature suggest indeed being aware of the possible risk of primary cutaneous CD30+ anaplastic large-cell T-cell lymphoma [3], Lymphomatoid papulosis type D [4] and Cutaneous Large B-Cell Lymphoma [5].

In this context, we describe two unexpected cases of fingolimod-induced rosacea occurred in two patients, in treatment for MS, admitted to the Division of Neurology of University of Campania "Luigi Vanvitelli".

Case Presentation

First case

A 48-year-old Caucasian woman has been diagnosed with RRMS in 2005 at age of 37. No relevant comorbidities or previous drug hypersensitivities emerged from her medical history.

DMD treatment was initiated in July 2005 and included interferon beta 1a and natalizumab, consecutively. The first drug was interrupted

after 59 months for non-response to treatment; during this therapy the patient experienced flu-like syndrome, hypertransaminasemia and leukopenia. Natalizumab was discontinued after 10 months because of patient's safety concerns. From October 2012 to March 2014 the patient did not assume any DMDs for her choice. In April 2014, the patient started fingolimod at standard dose (1 tablet 0.5 mg qd). After 4 days of treatment, she reported burning on her face, then skin rash, characterized by persistent redness with transient swollen, red bumps and pimples. Given the worsening of skin lesions, she was referred to a dermatologist who made a diagnosis of rosacea. Therapy with fingolimod was discontinued and doxycycline (100 mg/day/os) was prescribed. After 10 days, the patient achieved a complete resolution of rosacea. Concomitant therapies at the time of onset of rosacea included atorvastatin. A Naranjo assessment score of 3 was obtained, indicating a possible relationship between use of fingolimod and rosacea.

Second case

A 27-year-old Caucasian male has been diagnosed with RRMS in 2014 at age of 25. His medical history did not reveal any comorbidity. DMD treatment was initiated in October 2014 and included consecutively: interferon beta 1a (4 months), interrupted for recurrent episodes of flu-like syndrome and headache and dimethylfumarate, discontinued after 18 months for inefficacy. On October 2016, patient started treatment with fingolimod, but after one week of therapy he

***Corresponding author:** Brusco S, Department of Experimental Medicine, Campania Regional Center of Pharmacovigilance and Pharmacoepidemiology, University of Campania Luigi Vanvitelli, Via de Crecchio 7, 80138, Naples, Italy, Tel: +390815665805; Fax: +390815667652; E-mail: simona.brusco@unicampania.it

Received: July 03, 2018; **Accepted:** July 30, 2018; **Published:** August 06, 2018

Citation: Brusco S, Bertini M, Scavone C, Docimo R, Biscecco A et al. (2018) Two Unexpected Cases of Rosacea during Fingolimod Therapy. J Pharmacovigil 6: 266. doi:10.4172/2329-6887.1000266

Copyright: © 2018 Brusco S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

reported facial redness and flushing. The redness slowly spread beyond his nose, cheeks, chin, forehead and scalp. Small spots and papules appeared on his face, becoming redder and more persistent. On December 2016, he was referred to a dermatologist that made diagnosis of rosacea. Fingolimod was not discontinued but patient received a topical treatment with ichthyoil and zinc oxide, with suboptimal clinical improvement. In May 2017, when the patient stopped fingolimod for inefficacy, rosacea completely resolved. Concomitant therapy at the onset of rosacea included oxcarbazepine for MS-related pain. A Naranjo assessment score of 3 was obtained, indicating a possible relationship between the patient's AE and use of fingolimod.

Discussion

Few studies have explored the genetic relationship between rosacea and autoimmune disorders, such as MS [6]. Rosacea is a chronic inflammatory skin disease of adulthood, characterized by flushing, redness, pimples, pustules and telangiectasia, with a predilection for visible areas of skin, such as face [7]. Despite pathophysiology is not yet fully understood, several hypotheses have been proposed. Previous studies suggested the contribution of the immune system in all subtypes of rosacea [8]. The prevalence of this pathology is unclear although fair-skinned Europeans have a higher risk to develop it than dark-skinned people. Studies showed that the incidence of rosacea is up to 10% in the Swedes and up to 2%-3% both in the French and in the Germans. About 15%-40% of patients have positive family history [9]. New evidences point at some drugs or vitamins as potential risk factors for this pathology. It is known indeed that rosacea occurs in patients receiving steroids (prednisone, cortisone or hydrocortisone) [10], erlotinib [11], abatacept [12], tacrolimus [13] and pyridoxine [14] but no cases of rosacea have been reported in patients treated with fingolimod, so far.

As regards rosacea etiology, recent studies have demonstrated the role of sphingosine 1-phosphate (S1P) in skin lesions and atopic dermatitis [15]. Sphingosine is one of the major constituent of stratum corneum lipids which confers resistance to bacterial skin colonization. It can be phosphorylated in S1P, a signaling molecule *via* receptor. There are at least five S1P receptor subtypes, known as S1P1-5 expressed on a wide range of cells involved in many biological processes [16,17]. The S1P signaling system is critical for sprouting angiogenesis and modulating vascular permeability by endothelial cell-cell junctions [18]. Moreover, S1P plays a role in neurogenesis, cells proliferation, and lymphocyte trafficking and cytokines secretion [19].

Similarly to natural sphingosine 1-phosphate (S1P), fingolimod is phosphorylated to fingolimod-phosphate, showing high affinity for four of the five S1P receptors (S1P1 and S1P3-5). An eventual polymorphism in S1P receptors could explain the onset of rosacea in our patients. Therefore, a genetic variation could enhance intracellular signaling, lead to hyper-immune consequences, inflammatory damage or endothelial dysfunction contributing to the development of adverse events. To our knowledge, these are the first cases occurred during fingolimod therapy.

The evaluation of causality assessment, using Naranjo Adverse Drug Reaction Probability Scale, assigned the event to possible category, considering the positive dechallenge and the timing of appearance of rosacea during the treatment [20]. Moreover, the evaluation of preventability using the "P-method", classified the adverse drug reaction (ADR) as not preventable [21]. Lastly, considering the potential role of drug interactions as a cause of ADRs, no drug-drug interactions were detected using the Thomson Micromedex® program 2.0 (Truven Health Analytics, Inc. Greenwood Village, Colorado)

between fingolimod and the other concomitant therapies (atorvastatin in the first case and oxcarbazepine in the second one). According to the European legislation on pharmacovigilance, both cases are recorded into the nationwide spontaneous reporting database, the Italian Pharmacovigilance Network managed by Italian Medicine Agency (AIFA).

Considering the limitation of pre-marketing studies and the consequent lack of safety information, pharmacovigilance activities and spontaneous reporting system represent one of the most important methodologies in order to deepen knowledge of drugs used in clinical practice [22-24].

Conclusion

Even if we cannot exclude the correlation between rosacea and MS, as described by some authors, our cases contribute to the current knowledge on fingolimod safety profile. Further studies are needed to confirm the role of this drug in rosacea.

Acknowledgements

We thank the patients who gave consent for us to write about these two cases.

Conflicts of interest

The Authors declare that there are no known conflicts of interest associated with this publication.

References

1. Vargas DL, Tyor WR (2017) Update on disease-modifying therapies for multiple sclerosis. *J Investig Med* 65: 883-891.
2. Multiple safety warnings for fingolimod (2018) *Drug Ther Bull* 56: 27-28.
3. Papathemeli D, Grafe R, Hildebrandt U, Zettl UK, Ulrich J (2016) Development of a primary cutaneous CD30(+) anaplastic large-cell T-cell lymphoma during treatment of multiple sclerosis with fingolimod. *Mult Scler* 22: 1888-1890.
4. Samaraweera AP, Cohen SN, Akay EM, Evangelou N (2016) Lymphomatoid papulosis: A cutaneous lymphoproliferative disorder in a patient on fingolimod for multiple sclerosis. *Mult Scler* 22: 122-124.
5. Stitt DW, Boes CJ, Flanagan EP, Howard MT, Colgan JP (2018) A Case of cutaneous large B-cell lymphoma during treatment of multiple sclerosis with fingolimod. *Mult Scler Relat Disord* 19: 115-117.
6. Egeberg A, Hansen PR, Gislason GH, Thyssen JP (2016) Clustering of autoimmune diseases in patients with rosacea. *J Am Acad Dermatol* 74: 667-672 e1.
7. Tan J, Almeida LM, Bewley A, Cribier B, Dlova NC, et al. (2017) Updating the diagnosis, classification and assessment of rosacea: recommendations from the global rosacea consensus (ROSCO) panel. *Br J Dermatol* 176: 431-438.
8. Reinholz M, Ruzicka T, Steinhoff M, Schaller M, Gieler U, et al. (2016) Pathogenesis and clinical presentation of rosacea as a key for a symptom-oriented therapy. *J Dtsch Dermatol Ges* 14 Suppl 6: 4-15.
9. Chang ALS, Raber I, Xu J, Li R, Spitale R, et al. (2015) Assessment of the genetic basis of rosacea by genome-wide association study. *J Invest Dermatol* 135: 1548-1555.
10. Bhat YJ, Manzoor S, Qayoom S (2011) Steroid-induced rosacea: a clinical study of 200 patients. *Indian J Dermatol* 56: 30-32.
11. Rezakovic S, Pastar Z, Bukvic Mokos Z, Pavlisa G, Kovacevic S (2016) Erlotinib induced rosacea like dermatitis. *Acta Dermatovenerol Croat* 24: 65-69.
12. Lo Schiavo A, Tirri R, Peccerillo F, Abbondanza C, Russo B, et al. (2016) Rosacea and abatacept: the first report of a possible correlation. *G Ital Dermatol Venereol* 151: 123.
13. Hu L, Alexander C, Velez NF, Yang C, Canales AL, et al. (2015) Severe tacrolimus-induced granulomatous rosacea recalcitrant to oral tetracyclines. *J Drugs Dermatol* 14: 628-630.
14. Rezakovic S, Mokos ZB, Pastar Z (2015) Pyridoxine induced rosacea-like

dermatitis. *Acta Clin Croat* 54: 99-102.

15. Park K, Lee S, Lee YM (2013) Sphingolipids and antimicrobial peptides: function and roles in atopic dermatitis. *Biomol Ther (Seoul)* 21: 251-257.

16. Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. *J Clin Investig* 125: 1379-1387.

17. Arish M, Alaidarous M, Ali R, Akhter Y, Rub A (2017) Implication of sphingosine-1-phosphate signaling in diseases: Molecular mechanism and therapeutic strategies. *J Recept Signal Transduct Res* 37: 437-446.

18. Chumanevich A, Wedman P, Oskeritzian CA (2016) Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis can promote mouse and human primary mast cell angiogenic potential through upregulation of vascular endothelial growth factor-a and matrix metalloproteinase-2. *Mediators Inflamm* 2016: 1503206.

19. Hait NC, Maiti A (2017) The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. *Mediators Inflamm* 2017: 4806541.

20. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, et al. (1981) A method for estimating the probability of adverse drug reactions. *Clin Pharmacol Ther* 30: 239-245.

21. Benkirane R, Soulaymani-Bencheikh R, Khattabi A, Benabdallah G, Alj L, et al. (2015) Assessment of a new instrument for detecting preventable adverse drug reactions. *Drug Saf* 38: 383-393.

22. Sportiello L, Rafaniello C, Scavone C, Vitale C, Rossi F, et al. (2016) The importance of Pharmacovigilance for the drug safety: Focus on cardiovascular profile of incretin-based therapy. *Int J Cardiol* 202: 731-735.

23. Sessa M, Rossi C, Mascolo A, Grassi E, Fiorentino S, et al. (2015) Suspected adverse reactions to contrast media in Campania Region (Italy): results from 14 years of post-marketing surveillance. *Expert Opin Drug Saf* 14: 1341-1351.

24. Rafaniello C, Ferrajolo C, Sullo MG, Sportiello L, Balzano A, et al. (2016) Risk of gastrointestinal complications associated to NSAIDs, low-dose aspirin and their combinations: Results of a pharmacovigilance reporting system. *Pharmacol Res* 104: 108-114.