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Abstract

Human retinoblastoma protein-interacting zinc-finger gene RIZ (PRDM2) encodes two protein products, tumor
suppressor RIZ1 and proto-oncoprotein RIZ2, using alternative promoters. RIZ1 and RIZ2 regulate normal cell
division in a Yin-Yang fashion with RIZ1 arresting cells in G2/M phase and inducing apoptosis and RIZ2 promoting
cell proliferation. Silenced RIZ1 expression has been detected in various types of cancer. Because both RIZ isoforms
contain multiple functional domains, their function mechanisms in suppressing or promoting tumor growth are
complex. Based on the current knowledge, it is rational to propose four potential routes for RIZ1 to exert its tumor
suppressing functions: directly repressing the promoters of growth factors such as insulin-like growth factor-1 via
H3K9 (histone H3 lysine 9) methylation, regulating estrogen-induced pS2 transcription through forming a complex
with transcriptional co-activator p300, activating tumor suppressor p53 using a methylation-acetylation interplay,
and blocking gene transcriptions by binding to PR-Set7 and establishing a H4K20™' (histone H4 lysine 20 mono-

methylation) - H3K9™' (histone H3 lysine 9 mono-methylation) trans-tail ‘histone code’ at an ectopic locus.
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Introduction

Human tumor suppressor RIZ1 (PRDM2) is encoded by the
retinoblastoma protein-interacting zinc-finger gene RIZ (PRDM2),
which was firstidentified from a functional screening for retinoblastoma
tumor suppressor binding genes [1]. Gene RIZ is located on the distal
short arm of human chromosome 1 (1q36.21), which also harbors
other tumor suppressor genes such as CHD5. Besides RIZ1, gene RIZ
encodes a second protein product, RIZ2, using an internal promoter
other than the promoter that transcribes full-length RIZ mRNA [2-4].
Theoretically, it is possible to have other RIZ isoforms from alternative
RNA splicing since gene RIZ contains more than 10 potential exons [3].
As shown in Figure 1, except for an N-terminal PR domain possessing
histone methyltransferase (HMT) activity, RIZ1 and RIZ2 share the
same amino acid sequences and both contain a Rb-binding domain,
eight zinc finger motifs, a src homology 3 (SH3) domain, a putative
GTPase domain, a proline-rich domain and a PR-binding motif (PRB).
The expression level is almost identical between RIZ1 and RIZ2 among
different human tissues except testes; and such an equivalent expression
is essential for normal cell growth and functions [2,5,6]

Silencing of RIZ1 during Carcinogenesis

RIZ1 and RIZ2 regulate normal cell division and functions in a
Yin-Yang fashion [2-4]. RIZ1 acts as tumor suppressor to arrest cells in
the G2/M phase of cell cycle and induce cell apoptosis; whereas RIZ2
functions as a proto-oncoprotein to promote cell proliferation [5,6].
Silenced or decreased RIZ1 expression, commonly associated with
normal or increased RIZ2 expression, has been detected in various
types of cancer [1,3-36]. The silencing of RIZ1 expression is through at
least one of the following four mechanisms:

Methylation of the CpG islands in RIZ1 promoter

This is the mostly studied mechanism, but identity of the enzyme
that methylates RIZ1 promoter is still not clear. Aberrant methylation
of RIZ1 promoter has been observed in different types of cancer (Table
1) [4,7-27]. Nevertheless, a pairwise analysis by Feng et al. did not find
increased methylation of gene RIZ between normal and malignant
breast tissues [37]. Recently, RIZ1 promoter was shown to be up-
regulated by silencing SMYD3 (SET and MYND domain-containing

protein 3), a histone/protein methyltransferase, in human hepatoma
[38] and down-regulated by silencing transcriptional repressor
YY1 (Yin Yang 1) in human osteosarcoma [39]. Further studies are
definitely warranted to understand how RIZ1 promoter is regulated by
SMYD3, YY1, and even other histone/protein methyltransferases and
transcriptional repressors

Loss of heterozygosity (LOH) within the RIZ locus

Gene RIZ is located on the short arm of chromosome 1 (1p36),
which is unstable and frequently lost in human malignancies via non-
random deletions [40-42]. LOH within the RIZ locus in different types
of cancers has been summarized in Table 2 [18,23,28-31]. However,
a recent review on five candidate tumor suppressor genes, CHDS5,
CAMTAI, KIFIB, CASZ1 and miR-34a, located on 1p36 showed that
partial impairment instead of complete inactivation of their expression
was enough to promote tumorigenesis [43], implicating that down-
regulation of gene RIZ might follow the same mechanism in stimulating
tumor development and growth.

Figure 1: Structural components in tumor suppressor RIZ1 and its alternatively
transcribed proto-oncoprotein RIZ2. Except the PR domain located at the
N-terminus of RIZ1, both RIZ isoforms containing a retinoblastoma-binding
(Rb) domain, eight zinc finger motifs (shown in pink), a SH3 domain, a putative
GTPase domain, a proline-rich region and a PR domain-binding motif (PRB).
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Sample

Cancer type size Promoter methylation References
32 62% (20/32) [4]
42 79% (33/42) 71
Liver cancer 48 67% (32/48) 8
60 62% (37/60) [9]
39 56% (22/39) [10]
42 45% (20/42) [11]
Neuroblastoma 33 <10% [12]
Breast cancer 25 44% (11/25) [4]
Colorectal cancer 38 16% (6/38) (high-level MSI) [13]
Ovarian cancer 89 22% (20/89) [14]
69 7% (5/69) [15]
75 67% (50/75) [16]
Gastric cancer 45 69% (31/45) [17]
30 37% (11/30) [18]
47 43% (20/47) [19]
Prostate cancer 101 31% (31/101) 120]
Thyroid cancer 19 100% (19/19) [21]
Cervical cancer 40 38% (14/40) [22]
Parathyroid cancer 47 36% (17/37) [23]
Malignant pheochromocytoma 4 50% (2/4) [23]
Nasopharyngeal carcinoma 30 60% (18/30) [24]
53 57% (30/53) [25]
. . 71 16% (T: 64%, B: 7%) [26]
Acute lymphoblastic leukemia 72 31% (22/72) 27]

Table 1: RIZ1 promoter methylation in various types of cancer.

Cancer type Sample size | LOH within RIZlocus | References
Parathyroid cancer 47 28% (13/47) [23]
Pheochromocytoma 23 39% (9/23) [23]
Liver cancer 79 39% (31/79) [28]
Colon cancer 47 23% (11/47) [28]
Breast cancer 43 19% (8/43) [28]
Gastric cancer 66 12% (8/66) [28]
30 33% (10/30) [18]
gf‘;iﬁg“maamws cell 27 33% (9/27) 129]
Neuroblastoma 122 26% (32/122) [30]
Melanoma 57 18% (10/57) [31]

Table 2: LOH within the RIZ locus in various types of cancer.

Mutations within the RIZ gene

Both missense and frameshift mutations in RIZ have been observed
in human cancers [18,32-35]. Frameshift mutations were detected in
gene RIZ at two poly-A tracts, A, and A, within the coding region in
gastric, pancreatic, colorectal and endometrial cancers [18,32-34]. Both
mutations end up with truncated RIZ proteins (both RIZ1 and RIZ2)
without the C-terminal PRB motif, which in turn may disrupt the Yin-
Yang regulation of normal cell functions and lead to carcinogenesis
due to eliminated PR-PRB interaction although this interaction has
not yet been confirmed by any in vivo study. Searching for missense
mutations in RIZ has been focused on the PR domain and its
immediate C-terminal neighboring region. Missense mutation A563G
(corresponding to amino acid Ile188Val mutation) happened in high
incidence (29%, 11/35) in diffuse large B-cell lymphoma instead of other
types of cancer [35]. Missense mutations G317A (corresponding to
amino acid Cys106Tyr mutation) and C476T (corresponding to amino
acid Ala159Val mutation) were identified in human osteosarcoma cell
line Saos2 and neuroblastoma cell line SMS-KCNR, respectively [35].

Down-regulation via histone H3 lysine 9 (H3K9) methylation

This is the least studied mechanism on silencing RIZ1 expression.

A previous study by Zhang et al. showed extensive H3K9™ (H3KO9 tri-
methylation) at the silenced RIZI promoter in human hepatocellular
carcinoma cell line HepG2 [8]. As RIZ1 possesses H3K9 methylation
activity, an interesting issue needs to be further addressed is whether
there is a negative feedback on RIZ1 expression, i.e., RIZ1 methylates
H3K9 at its own promoter region. Reintroduction of RIZ1 via viral
transfection was shown to suppress proliferation, arrest cell cycle in
G2/M phase and induce apoptosis in cancer cells [44,45]. Furthermore,
the expression level of RIZ1 has been related to tumor metastasis.
Dong et al. reported that reduced RIZ1 expression was correlated
positively with increased risk of tumor metastasis [46]; however, Sun
et al. showed that RIZ1 mRNA expression was increased significantly
at stage IV in various types of cancer [47]. Since patient survival rate
drops dramatically for all types of cancer when tumor cells metastasize
to distal organs, it is extremely important in future studies to identify
whether RIZ1 expression is indeed increased at protein level as
increases in mRNA expression do not always translate proportionally
into protein expression, whether RIZ1 is in the wild-type or mutated
form, and what role RIZ1 plays during metastasis, i.e., increased RIZ1
expression in late-stage diseases promotes metastasis due to local
stress resulted from increased tumor mass and reduced oxygen and
nutrient supplies or counteracts tumor metastasis as a self-protective
yet unsuccessful endeavour.

Structural Components and Their Biological Functions

Since RIZ contains multiple functional domains, its biological
function is deemed to be complex. Studying its structural components
(Figure 1) as well as their individual biological functions will
definitely provide us a better understanding of RIZ1. The PR domain,
which is located at the N-terminus of RIZ1 and the only structural
difference between the two RIZ isoforms, possesses HMT activity
and is structurally related to the suppressor of variegation-enhancer
of zeste-trithorax (SET) domain of chromatin-associated proteins
involved in gene expressions [48]. H3K9 methylation by RIZ1 is via
the function of the PR domain [48,49]. The ability of RIZ1 to methylate
H3K9 was depleted by the 11e188V mutation and decreased by the
Cys106Tyr and Alal59Val mutations [49]. Transfection with cDNA
encoding only the PR domain and its C-terminal neighboring region
(amino acid residues 13-190) of RIZ1 significantly increased the
cell death of hepatoma HuH7 cells, implicating that the PR domain
possesses tumor suppressing activity even without the help of the
other functional domains [47,50]. The Rb-binding domain interacts
with the C-terminus of retinoblastoma protein (Rb), which is an
important tumor suppressor [51].Since Rb is a common target for
viral oncoproteins, it has been speculated that oncoviral proteins may
structurally mimic RIZ proteins (RIZ1 and RIZ2) to interact with Rb
and alter its biological function [51]. Extensive orthology is revealed
between the Rb-binding domain of RIZ proteins and adenovirus
oncoprotein E1A, which promotes cell proliferation, although they are
evolutionally unrelated [51,52]. Eight zinc finger motifs are dispersed
throughout the central and C-terminal regions of RIZ proteins. Zinc
fingers 1-6 are C2-H2 type and zinc fingers 7-8 are C2-HC type [51].
The C2-H2 type zinc fingers are usually involved in transcriptional
regulation; whereas the C2-HC type zinc fingers inhibit cell apoptosis
[53]. In spite of that the functions of zinc fingers 4-8 remain unclear,
zinc fingers 1-3 were shown to be essential for DNA binding [54].
Transfection and expression of these three zinc fingers increased cell
proliferation in breast cancer cells [55]. Homology has been observed
between the zinc fingers of RIZ proteins and the zinc fingers of
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other PR-domain containing proteins [51]. RIZ proteins contain a
putative GTPase domain [54]. Both RIZ1 and RIZ2 can suppress the
transcription of a herpes simplex virus thymidine kinase promoter
[54]. A point mutation (Lys755Asn) in the GTPase domain disrupted
its GTPase activity but did not change the transcriptional repression
action of the RIZ proteins [54]. Interestingly, the SH3 domain, which is
located immediately N-terminal to the GTPase domain, was involved
in this repression action as revealed by point mutation studies [54].
The SH3 domain helps in assembling protein complexes via binding
to proline-rich peptides [56]. RIZ proteins also contain a proline-rich
region; however, it is unknown whether there is an interaction between
the SH3 domain and the proline-rich region. The LXXLL motif in the
proline-rich region is essential to receive estrogen receptor signaling
and change the distribution of RIZ proteins inside cells [57]. The
C-terminal PR-domain binding (PRB) motif was revealed from an
in vitro assay [58]; however the interaction between PR and PRB has
not yet been observed under in vivo conditions. The important Yin-
Yang regulation roles played by the RIZ proteins during carcinogenesis
warrant further investigations on how these functional domains
coordinate together to fulfil the tumor-suppressing function for RIZ1
and tumorigenic action for RIZ2.

Functional Mechanism

Contrary to the large amount of information on silencing RIZ1
expression during carcinogenesis, little is known about the functional
mechanisms of RIZ1, RIZ2 and their Yin-Yang regulations under in
vivo conditions. The very limited research on the functional mechanism
of RIZ1 has been focused on its HMT activity since PR domain is
the only structural difference between RIZ1 and RIZ2. Furthermore,
histone modification is closely related to DNA methylation [59].
Histone modification undergoes a dramatic change from H3*¢ (histone
H3 acetylation), H4*¢ (histone H4 acetylation) and H3K4™?? (histone
H3 lysine 4 di- or tri-methylation) in normal cells with un-methylated
CpG islands to H3K9™* (histone H3 lysine 9 di- or tri-methylation)
and/or H3K27™ (histone H3 lysine 27 di- or tri-methylation) in cancer
cells with aberrant methylation of the CpG islands [59-61]. Based on
the limited information on the functions of RIZ1, it is still rational to
propose the following four potential regulatory routes to explain the
tumor suppressing and anti-metastasis functions of RIZ1 (Figure 2).

Figure 2: Four potential regulatory routes for the tumor-suppressing and anti-
metastasis functions of RIZ1.

RIZ1 directly represses the promoters of growth factors
involved in carcinogenesis via H3K9 methylation

This route is proposed based on the observation that RIZ1
suppressed the insulin-like growth factor-1 (IGF-1) signaling pathway
by directly repressing the IGF-1 promoter via H3K9 methylation in
chronic myeloid leukemia [45].The promoter repression would, in
turn, reduce the transcription level of the growth factors and attenuate
their downstream signaling.

RIZ1 exerts its histone modification functions via binding to
p300

RIZ1 was observed to form a complex with transcriptional co-
activator p300 to augment estrogen-induced transcription of gene
pS2 (TFFI) in human breast cancer MCF?7 cells [62]. Gene pS2 (TFFI)
encodes a small protease-resistant secretory protein TFF1 (trefoil
factor 1), which acts as a tumor suppressor in gastric cancer [63,64] but
a tumorigenesis and metastasis promoter in prostate and pancreatic
cancers [65-67]. The role TFF1 plays in breast cancer is controversial.
Amiry et al. showed that TFFI functioned as an oncogene and forced
expression of TFF1 increased the oncogenicity of human breast cancer
MCF7 and T47D cells [68]. On the contrary, Buache et al. reported
TFFI acted as a beneficial factor rather than an oncogene in the breast
and knockout of TFF1 augmented the tumorigenicity of breast cancer
cells and stimulated breast tumor development [69]. Although TFF1
enhanced the migration and invasion of breast cancer MDA-MB-231,
MCF7 and ZR75.1 cells under in vitro conditions, its expression is
usually depleted in highly metastatic breast cancer cell lines such as
MDA-MB-231 [69]. A simple working model on how RIZ1 affects
the estrogen-induced pS2 transcription has been proposed taking in
consideration that the RIZ1-p300 complex possesses both histone
methylation and acetylation activities [62,70]. The complex methylates
H3K9 via the HMT activity of RIZ1 and silences the pS2 promoter in
the absence of estrogen. Upon estrogen activation, the complex binds
to the estrogen receptor (ER), switches the histone modification from
H3K9 methylation to H3K9 acetylation via the histone acetyltransferase
(HAT) activity of p300, and promotes pS2 transcription.The delicate
H3K9 modification by RIZ1-p300 may be essential in controlling the
expression level of TFF1 and its biological function.

RIZ1 expresses its tumor suppressing activity via tumor
suppressor p53

The expression of p53 was increased by RIZ1 in monocytic leukemia
and malignant meningioma [71-73]. However, the exact mechanism
is unknown. A previous study on p53 towards DNA damage showed
a methylation-acetylation interplay was important for its activation
and stabilization [74]. Set7/9, which possesses HMT activity at H3K4,
methylated p53 at residue Lys372 [74]. Lys372™ then activated p53 via
enhancing its acetylation at residues Lys373 and Lys382 by p300 [74].
The methylation-acetylation interplay also increased the acetylation of
histone 4 at the promoter region of tumor suppressor p21, leading to
its up-regulation to suppress cell cycle [74-76]. Here, we hypothesize
that the RIZ1-p300 complex activated p53 using a similar methylation-
acetylation interplay mechanism, i.e., RIZ1 could methylate Lys372 of
p53. Subsequently, the activated p53 can decrease tumor metastasis via
CD82 [76-79]. In addition, the RIZ1-p300 complex might counteract
the inhibitory effect of Mdm2 (mouse double minute 2 homolog) on
p53 acetylation.
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RIZ1 shows its tumor suppressing activity through direct
binding to PR-Set7

A very recent study by Congdon et al. showed that RIZ1 was

recruited to chromatin by PR-Set7 via direct binding of their C-terminal
domains [80]. The RIZ1-PR-Set7 complex was able to establish an
H4K30™!-H3K9™! trans-tail ‘histone code’ at an ectopic locus to
repress gene transcriptions [80]. Regardless of which route/routes RIZ1
may use to carry out its tumor suppressing functions, it is still unknown
how the different functional domains of RIZ proteins coordinate one

a

nother during tumor-suppressing by RIZ1 or carcinogenesis by RIZ2.

It will definitely be a big boost of our understanding about RIZ1 as
well as other tumor suppressors if the coordination of these functional
domains is clearly elucidated.
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