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Abstract
Tumor Differentiation Factor (TDF) is a protein produced by the pituitary and secreted into the blood stream. 

TDF targets breast and prostate and induces cell differentiation. However, the mechanism of cell differentiation, the 
TDF receptor and the TDF pathway have not been adequately investigated. Here, we provide some insights about 
the possible composition of the TDF-R. TDF-R may be a protein complex, composed of GRP78, HSP70 and HSP90 
proteins, and all three protein subunits have a docking site for TDF-P1. The question of whether the TDF-R complex is 
a stable or transient/inducible complex is currently being investigated.
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Introduction

Virtually, all expressed proteins in a given cell are arranged into 
multi-protein complexes [1-9]. Identification of individual components 
of those complexes is extremely important for their functional 
characterization [5,8,10-20]. One of the most powerful methods 
in identifying proteins is mass spectrometry, in particular, Liquid 
Chromatography-Tandem Mass Spectrometry (LC-MS/MS) [5,8,15-
19]. Combination of LC-MS/MS with a biochemical purification or 
fractionation strategy makes LC-MS/MS even more powerful, as the 
protein fractionation allows the LC-MS/MS to increase the number 
of proteins identified from a particular sample. Affinity Purification-
Mass Spectrometry (AP-MS), a combination of Affinity Purification 
(AP) and Liquid Chromatography-Tandem Mass Spectrometry (LC-
MS/MS), allows for screening of multiple-protein complexes, and for 
accurate identification of their components [6,7,9,13,14,21]. Therefore, 
a large number of the available Protein-Protein Interactions (PPIs) data, 
both stable and transient, have been discovered using AP-MS [2,22-26]. 
Using one protein as bait in AP-MS experiments will usually lead to 
identification of several potential interactors, and will help to organize 
them into functional interacting units. Tumor Differentiation Factor 
(TDF) is a protein produced by the pituitary and secreted into the blood 
stream. TDF targets breast and prostate and induces cell differentiation. 
However, the mechanism of cell differentiation, TDF receptor and 
TDF pathway, have not been thoroughly enough investigated. Here, we 
provide some insights about the possible composition of the TDF-R, as 
well as a review of research to date. 

Methods

All biochemical purification and proteomics identification of the 
TDF-R candidates were performed, as described in [22,23]. All STRING 
PPIs were performed as in [4,27-31]. All structural biology experiments 
were performed as in [3,22,23].

Results and Discussion

Tumor Differentiation Factor (TDF) is a protein produced by the 
pituitary and secreted into the blood stream [32-35]. The target organs 
as breast and prostate, and the final effect is cell differentiation [32-34]. 
Work in our lab also identified TDF in the brain, specifically in neurons, 
but not in the astrocytes. Additional work in our lab also focuses on 
identification of the mechanism of TDF-induced cell differentiation. 
Therefore, some of the questions that we initially asked were 1) what are 
the potential TDF receptor (TDF-R) candidates? 2) How does TDF-R 
transduce the differentiation effect across the cell membrane, 3) Is TDF 
a hormone? To answer to one of these questions, we used TDF-P1, a 

20 amino acid peptide from the open reading frame of TDF protein, 
cross-linked to agarose beads to purify potential TDF-R candidates. In 
our experiments using DU145 prostate cancer cells and MCF7 breast 
cancer cells, but not in experiments using HeLa, fibroblasts or other 
cells, we identified several proteins from the 70 kDa and 90 kDa family 
of Heat Shock Proteins (HSPs) as TDF-R candidates, with glucose-
regulated protein/HSPA5/GRP78, HSP70 and HSP90 being the most 
likely TDF-R candidates [7,22,23,34,36]. Examples of MS/MS spectra 
that led to the identification of these proteins as TDF-R candidates are 
shown in Figure 1. The results from our AP-MS experiments could 
potentially expand the interactome map for those proteins and lead to 
better understanding of their function in breast and prostate cancer.

To further investigate GRP78, HSP70 and HSP90 proteins as 
potential TDF-R candidates, and whether these proteins interact with 
each other and possibly form a protein complex, we have used String 
database to predict Protein-Protein Interactions (PPIs) and the protein’s 
functional relationships with its partner proteins [28,29,31]. We took 
dnaK (chaperone HSP70, co-chaperone with DnaJ; Escherichia coli 
strain K-12 substr. MG1655), 78 kDa glucose-regulated protein (heat 
shock 70kDa protein 5 or HSPA5) and HSP90 (heat shock protein 
90kDa alpha) as examples to study their interaction and relation to 
their functional partners. Network architecture of protein-protein 
interactions and their functional relatives can be identified and 
estimated using String. String network (direct and indirect relations) 
uses several active prediction methods that include “co-expression”, 
“experiments” and “text mining”. (Figures 2A and 2B, 3A and 3B, and 
4A and 4B) display possible network of multiple interacting partner 
proteins (nodes) of dnaK, HSPA5 and HSP90, respectively. A node is 
the representative of a protein and an edge is the interaction or linkage 
between two protein partners. Figures 2C, 3C and 4C are the graphic 
representation of the observed connectivity between dnaK/GRP78/
HSP90 protein and their ten predicted partners. All these views are in 
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action view, where dark lines describe stronger associations. Based on 
the published results and the String PPI network, it looks indeed as if 
these three proteins do interact with each other and possibly form a 
protein complex.  

Treatment of MCF7 human breast cancer cells and DU145 prostate 
cancer cells with TDF-P1 leads to differentiation of these cells; this effect 
is not observed on other non-breast, non-prostate cancer or normal 
cells [32,33]. TDF-P1 is a peptide from the N-terminal part of the TDF 
that has demonstrated differentiation activity on breast and prostate 
cancer cells as the full length protein [32,33]. Therefore, to interact 
with TDF-P1 and transduce a differentiation signal, the three TDF-R 
candidates (GRP78, HSP70 and HSP90) must be present at the cell 
surface. However, it is still not clear to us whether these proteins form a 
stable protein complex or is a transient, inducible protein complex. This 
question is still being investigated in our laboratory. Also, not known 
is whether the knock down of GRP78, HSP70 and HSP90 will prevent 
binding of TDF and TDF-P1 to its receptor and will promote cell 
differentiation. This question is currently investigated in our laboratory. 

Figure 1: Identification of TDF-R candidates in DU145 cells using AP and LC-
MS/MS (AP-MS). The potential receptors for TDF protein were purified from cell 
lysate using AP, resulting samples were separated by SDS-PAGE and the gel 
bands were excised and digested by trypsin. The peptides mixture was analyzed 
by LC-MS/MS to identify the purified proteins. A: MS/MS spectrum of peptide 
VEIIANDQGNR that led to identification of GRP78 as TDF-R candidate. B: MS/
MS spectrum of peptide TTPSYVAFTDTER that led to identification of HSP70 as 
TDF-R candidate. C: MS/MS spectrum of peptide GVVDSEDLPLNISR that led to 
identification of HSP90 as TDF-R candidate.
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Figure 3:  Model interaction network of 78 kDa glucose-regulated protein 
(GRP78/HSPA5) and its possible functional partners. A and B) Network of 
multiple potential interacting partner proteins (nodes) of HSPA5. C) Closer view 
of interaction. Here the numbers of interacting proteins are ten. The darker lines 
describe stronger associations. These protein-protein interactions network was 
generated using STRING program, where a node represents a protein structure 
and links are projected by edge. The confidence score was set to 0.4.
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Figure 2:  Model interaction network of dnaK chaperone (HSP70) and its possible 
functional partners. A and B displayed network of approximately five-hundred and 
one-hundred potential interacting partner proteins (nodes) of dnaK. C. Closer 
view of interaction. Here the numbers of interacting proteins are ten. These views 
are in confidence view, where denser lines describe stronger associations. These 
protein-protein interactions network was generated using STRING program, 
where a node represents a protein structure and links are projected by edge. The 
confidence score was set to 0.4.
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Figure 4:  A model protein interaction network of HSP90 (heat shock protein 90kDa 
alpha) and its probable functional partners. A and B) Network of approximately 
five-hundred and one-hundred potential functional partner proteins (nodes) of 
HSP90. C) Closer view of interaction. Here the numbers of interacting proteins 
are ten. The thicker lines describe stronger associations. These protein-protein 
interactions network was generated using STRING program, where a node 
represents a protein structure and links are projected by edge. The confidence 
score was set to 0.4.
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The next question that we asked was whether HSP90, in addition to 
GRP78 and HSP70, have docking sites for TDF-P1. We already knew 
that both GRP78 and HSP70 have several docking sites for TDF-P1. 
Therefore, we investigated HSP90 for possible TDF-P1 docking sites. 
The crystal structure 2CG9 (chain B, heat shock protein 90-alpha) was 
used as a template to set up a homology model of HSP 90 [37]. HSP 90 
proteins are composed of N terminal, middle and C terminal domains. 
Figure 5A presents the homology model of 2CG9B starting from the 
N (colored blue) to C (colored red) terminals, and the model receptor 
was established using the SWISS-MODEL server [38,39]. The α-carbon 
Root-Mean-Square Deviation (RMSD) of 2CG9B crystal structure 
and homology model is 4.13 Å [40]. The docking site of P1 peptide 
onto the receptor model was identified using the GRAMM-X Protein-
Protein Docking Web Server v.1.2.0, as used in our published work 
[22,23,35,36,41,42]. A second run for this identification was carried 
out using the “Patch dock” and “Fire dock” servers [43-46]. Detailed 
descriptions of these docking experiments are described in our previous 
papers [22,23,35,36], and Discovery Studio Visualizer 3.5 was used to 
plot the tentatively identified binding pockets [47]. 

We then used structural biology to investigate the possibility that 
the members of the HSP90 family of proteins are a docking place for 
TDF-P1. Among the first 10 highest ranked structures developed by 
“GRAMM-X” web server, P1 was docked onto three regions of the 
model receptor (Figure 5A). These three potential docking sites and 
neighboring amino acid residues of P1 peptide are shown in Figures 

5B-5D. “Patch dock” and “Fire dock” simulation servers identified three 
additional potential docking sites for P1 peptide. These three additional 
potential docking sites and neighbor residues of docked peptide on 
the receptor model are shown in Figure 6. Therefore, based on these 
investigations, our molecular modeling experiments indeed found 
possible docking sites within HSP90 for TDF-P1.

Conclusions
Overall, the data allowed us to conclude that the TDF-R may 

indeed be a protein complex, composed of GRP78, HSP70 and 
HSP90 proteins, and all three protein subunits have a docking site for 
TDF-P1. The question of whether the TDF-R complex is a stable or 
transient/inducible complex is currently being investigated. Current 
investigations in our laboratory will also allow us to clarify whether 
there is only one subunit as the main TDF-R, or there is more than one 
natural docking site for TDF. 
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