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Editorial
The Journal of Carcinogenesis and Mutagenesis follows a now 

century-old tradition of publishing investigations into the genetic, 
i.e., mutational, basis of cancer. Insights from our field have been,
and continue to be, critically important for human cancer treatment,
detection and prevention.

Genotoxicity provided the rationale for systemic cancer therapy, 
which is only, now, after 70 years or so, giving way to new modalities. 
It is becoming standard practice to evaluate the genome and/or 
transcriptome of cancers in order to tailor targeted therapies using 
antibodies (and now, fusion antibodies), small molecule inhibitors, 
and, in the near future, microRNAs, both native and engineered. 
These methods usually target the altered or over expressed products 
of activated oncogenes; normal cellular genes activated by site-specific 
mutation.

Altered cellular proteins activated oncogenes or inactivated (i.e., 
DNA hypermethylated) tumor suppressor genes can also be found in 
cellular surveys or bodily fluids, allowing for detection of the cancer 
prior to overt tumorigenesis, or even at the preneoplastic stage.

It is, however, at the level of prevention where the field of 
genotoxicity has made its greatest contributions to human health, and 
where it may play its most important roles in the future. It is impossible 
to estimate the number of cancer cases prevented by the governmental 
and industrial screening of chemicals and products for mutagenic 
activity, which have then not been introduced into wide human contact.

Arguably, however, we have not been as successful at identifying 
and removing carcinogenic agents already in the environment. The 
classification of such agents at the highest, actionable, level requires 
unambiguous human epidemiological data, a level of stringency that is 
almost impossible to attain. Indeed, it is almost as if a Hiroshima-scale 
exposure event is required for every individual carcinogenic agent. 
Real-world exposures are unlikely to provide the power necessary for 
strong associations with a disease such as cancer, which has long been 
known to require multiple events.

Rather than focusing on the carcinogen, however, the multi-
step model of cancer provides an alternate approach for human 
carcinogenesis, analysis of humans themselves. The rationale is simple: 
if multiple events are required to induce cancer, and most, if not all 
such events are mutations (we must leave room for epigenetic events, 
mechanisms that mimic genetic events [1]), then cancer should occur 
differentially in individuals and populations with high frequencies of 
mutation.

This was the basis of a series of studies applying our oldest 
mutational assays, cytogenetic analyses of lymphocyte chromosomal 
aberrations, micronuclei and sister chromatid exchange prospectively to 
populations in a number of countries around the world [2-6]. It quickly 
became clear that chromosomal aberration frequency was predictive of 
subsequent cancer incidence and/or mortality, an observation that has 
held up over time [7]. Indeed, with the accumulation of studies and 
follow-up time, micronucleus frequency was also found to be predictive 

of cancer [8,9]. Just to show that all cytogenetic analyses are not equally 
applicable, sister chromatid exchange remains unpredictive.

An important aspect of these studies has been that although the 
original populations chosen were often targeted due to known or 
expected exposures, the authors acknowledge the importance of and 
variability of individual susceptibility in their models [10]. Too often, 
such studies have been weighted towards either exposure (toxicologists) 
or predisposition (geneticists) with little allowance for the interaction 
of such factors. The integration of individual response into exposure 
measurements was advocated in 1983 by Hsu [11], and we have 
observed considerable inter-individual variability in measurement of 
human DNA repair capacity [12].

So, with two successful, predictive measures of cancer risk validated 
and available, why has there been no effort to apply these techniques in 
population screening? One reason appears to be the lack of specificity 
of the results. Since these studies amalgamate populations assayed in 
different laboratories, the authors felt justified in separating the assay 
results only in tertiles, with the highest tertile showing a consistent, but 
relatively modest relative risk of cancer on the order of two-fold. There 
also seems to be some perceived resistance to the minimally invasive 
phlebotomy required to obtain samples for these analyses, with current 
efforts apparently attempting to standardize assay procedures and shift 
the focus to non-invasively obtainable buccal cells [13]. In a world 
where single measurements are predictive of cancer and blood samples 
are available after any doctor visit, this seems like progress sideways 
rather than forward.

Another approach to measurement of human somatic mutation 
has been the development of a number of gene-specific assays [14]. 
Due to the feasibility requirement of detecting mutations with single-
hit kinetics in a diploid organism (humans), there have never been 
many such assays, with early techniques targeting the β−hemoglobin 
and HLA genes having fallen by the wayside, only to be replaced by 
methods focusing on the T cell receptor [15] and PIG-A [16,17] loci.

The two most widely applied of these types of methods, the HPRT 
assay in lymphocytes and the GPA assay in erythrocytes, have also been 
applied in retrospective studies comparing the mutation frequencies in 
newly diagnosed cancer patients and controls [18]. In both assays, the 
patient population exhibited a 1.5-fold increased mutation frequency 
that was statistically significant.
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The GPA assay was developed as a biodosimeter for ionizing 
radiation, but has since been validated in a number of exposure scenarios 
[19]. It has also been found to be diagnostic for certain inherited DNA 
repair deficiency syndromes [20,21]. If “outliers” are discriminated in 
the normal and cancer patient populations as defined for diagnostic 
purposes, they have an odds ratio of over 4 of preferentially occurring 
among the patients. Although the proportion of such individuals with 
unusually high GPA mutation frequencies varies significantly with 
age [22], it averages about 10% of the normal population, a more 
manageable proportion for targeted analysis, monitoring or treatment.

Several other types of analysis have also been reported to be 
predictive of cancer in human populations, such as mutagen sensitivity 
[23] and screening of blood for oncogene mutations [24] and
methylated tumor suppressor genes [25]. Perhaps it is time to shift our
emphasis from debating the best tests for chemical screening (again)
[26,27] to determining the best set of tests to prospectively defining
cancer risk in human populations?
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