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Abstract

In this article, the problem of two parallel cracks in arbitrary positions of a functionally graded piezoelectric material 
(FGPM) strip is analyzed under transient thermal loading conditions. It is assumed that the thermoelectroelastic 
properties of the strip vary continuously along the thickness of the strip, and that the crack faces are supposed to be 
insulated thermally and electrically. By using both the Laplace transform and the Fourier transform, the thermal and 
electromechanical problems are reduced to two systems of singular integral equations. The singular integral equations 
are solved numerically, and a numerical method is then employed to obtain the time dependent solutions by way of 
a Laplace inversion technique. The intensity factors versus time for various geometric and material parameters are 
calculated and presented in graphical forms. Temperature change, the stress and electric displacement distributions 
in a transient state are also included. 

Keywords: Thermo electroelasticity; Fracture mechanics;
Functionally graded piezoelectric material; Arbitrary positions; Two 
parallel cracks; Integral transform; Transient response 

Introduction
Piezoelectric materials widely have been used as sensors and 

actuators in smart or intelligent systems to sense thermally induced 
distortions and to adjust for adverse thermomechanical conditions 
[1,2]. The requirements of structural strength, reliability and lifetime 
of these structures call for a better understanding of the mechanics of 
fracture in piezoelectric materials under thermal loading. 

Recently, functionally graded piezoelectric materials (FGPMs) 
have been developed to improve their reliability [3], and the 
electromechanical fracture of the FGPM under mechanical and 
electrical loadings has received much attention [4-6]. Thus, it is also 
important to investigate the fracture behavior of FGPMs under thermal 
load, and some interesting results have been reported [7-12]. 

While the fact that piezoelectric materials involve multiple cracks, 
most of the existing contributions are concerned with the fracture 
behavior of a single crack. Then some thermal fracture problems of 
homogeneous piezoelectric strips with two dimensional cracks, such as 
two coplanar cracks [13], two parallel cracks [14], parallel multi cracks 
[15] and a T-shaped crack [16], have been treated. Moreover, the over
shooting phenomenon of intensity factors is observed in a piezoelectric 
plate under the thermal shock loading [17,18]. So, in this type of
research, it is important to investigate the transient thermal fracture
behavior of piezoelectric materials with multiple cracks. Although the
present authors investigated the thermoelectromechanical interaction
between two parallel axisymmetric cracks in an FGMP strip [19,20],
one of the remaining problems that need to be fully understood is that
of interaction between cracks in arbitrary positions of FGPMs under
thermal shock loading.

In this study, the problem of two parallel cracks in arbitrary 
positions in a plate of an FGPM strip is analyzed under transient 
thermal loading conditions. It is assumed that the thermoelectroelastic 
properties of the strip vary continuously along the thickness of the 
strip, and that the crack faces are supposed to be insulated thermally 
and electrically [5,9]. By using both the Laplace and Fourier transform 

techniques [21,22], the thermal and electromechanical problems are 
reduced to two systems of singular integral equations. The singular 
integral equations are solved numerically [23], and a numerical method 
is employed to obtain time-dependent solutions by way of a Laplace 
inversion technique [24]. The intensity factors versus time for various 
geometric and material parameters are calculated. 

Formulation of the Problem 
Consider an infinite FGPM strip of thickness h = h1+ h2 containing 

two parallel through cracks of different length 2Ck (k = 1, 2) being 
spaced at distances 2d in the x-direction and 2h0 in the Z -direction 
as shown in Figure 1. The rectangular coordinates x, y and z are 

Figure 1: Geometry of the crack problem in a functionally graded piezoelectric 
strip.
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coincident with the principal axes of the material. The piezoelectric 
strip is poled in the z-direction and is in the plane strain conditions 
perpendicular to the y -axis. It is assumed that initially the medium is 
at the uniform temperature T1 and is suddenly subjected to a uniform 
temperature rise T0 H(t) along the boundary Z = h1, where H(t) is the 
Heaviside step function and t denotes time. The temperature along the 
boundary Z = -h2 is maintained at T1. The crack faces remain thermally 
and electrically insulated [5,9]. In the following, the subscripts x, y, z 
will be used to refer to the direction of coordinates.

The material properties, such as the elastic stiffness constants Ckl, 
the piezoelectric constants ekl, the dielectric constants εkk, the stress-
temperature coefficients λkk, the coefficients of heat conduction, Kx, Kz 

and the pyroelectric constant Pz are one-dimensionally dependent as 
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where β, ω and δ, are positive or negative constants, and the subscript 
0 indicates the properties at the plane Z = 0. For some materials, the 
thermal diffusivity λ0 indeed doesn’t vary dramatically, and then λ0 is 
assumed to be a constant. 

The constitutive equations for the electroelastic fields are,
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where Ti ≡ Ti (x,z,t) is the temperature, φi ≡ φi (x,z,t) is the electric 
potential, uxi ≡ uxi (zxi), uzi ≡ uzi(x,z,t), are the displacement components, 
σxxi ≡ σxxi (x,z,t), σzzi ≡ σzzi(x,z,t), zxi ≡ σ zxi (x,z,t) (i = 0,1, 2) are the stress 
components. The subscript i = 0,1,2 denotes the thermoelectroelastic 
fields in –h0 ≤Z ≤h0, h0 ≤Z ≤h1, -h2 ≤Z ≤–h1 respectively. For the electric 
field, the constitutive relations are 

15 11

31 33 33

( 0 1 2)

φε

φε

∂ ∂ ∂ = + −  ∂ ∂ ∂  = , ,
∂ ∂ ∂ = + − + ∂ ∂ ∂ 

xi zi i
xi

xi zi i
zi z

u uD e
z x x i

u uD e e p T
x z z

    (3)

Where Dxi ≡ Dxi (x,z,t), Dzi ≡ D zi (x,z,t) (i = 0,1,2) are the electric 
displacement components. 

The temperature is assumed to satisfy the Fourier heat conduction 
equations: 
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where κ2
 = κx/z. The equations of equilibrium and electrostatics are, 
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The initial and boundary conditions for the temperature field can 
be written as 
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If the electrically impermeable boundary is chosen as an idealized 
crack face electric boundary condition [9,25], the boundary conditions 
of this problem can be written as 
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In Eqs. (7)-(13), θ0i, θ1i, αi and bi (i = 1,2) are given by 
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Temperature Field 
For the problem considered here, it is convenient to represent the 

temperature Ti (x,z,t) (i = 0,1,2) as the sum of the uniform temperature 
TI and two functions. 

(1) (2)( ) ( ) ( ) ( 0 1 2), , = + , + , , = , ,i I iT x z t T T z t T x z t i (15)

where the non-disturbed temperature T(1)≡ T(1)(z,t) satisfies the 
following equation accompanied by initial and boundary conditions: 
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and the disturbed temperatures Ti
(2)≡ Ti

(2)
 (x,z,t) (i = 0,1,2) are subjected 

to the relations: 
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Define a Laplace transform pair by 
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where Br denotes the Bromwich path in pertinent complex planes, and 
applying the Laplace transform, it is easy to find from Eqs. (16)-(18) 
that 
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In the following, the superscript * is used to refer to the physical 
quantities in the Laplace transform plane. 

The general solutions of the governing Eq. (19) can be obtained by 
using the Laplace-Fourier integral transform techniques [21]: 
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In the above expressions, Dij(s,p)(i = 0,1,2, j = 1,2) are unknown 
functions to be solved and 

τij  τij (s,p) (i = 0,1,2, j = 1,2) are defined as 
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The problem may be reduced to a system of singular integral 
equations by defining the following new unknown functions Gk 0 (x,p)
(k = 1,2) [22]: 
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Making use of the first boundary conditions (21) with Eqs. (22), 
we have the following system of the singular integral equations for the 
determination of the unknown functions Gk0(ξ, p)(k = 1,2): 
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In Eqs. (29) and (30), the kernel functions M0nk (ξ,x,p)(n,k = 1,2) 
are given by 
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It is noted that the kernel functions M011 (,x,p), M022 (ξ,x,p) are 
semi-infinite integrals which have rather slow rate of convergence. To 
simplify the numerical analysis, the kernels are evaluated as follows: 
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} [ ]2 0exp 2 ( ) sin ( )τ ξ − − − − s h h s x ds                  (34)

Where the kernel functions 011( )ξ∞ , ,M x p , 022 ( )ξ∞ , ,M x p  are given 
in Appendix A. 

The system of the singular integral equations (29) and (30) is to 
be solved with the following subsidiary conditions obtained from the 
second boundary conditions of Eqs. (21). 
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The solution procedure of the system of the singular integral 
equations will be explained lately. 

Once Gk0 (ξ, p)(k = 1,2) are obtained from Eqs. (29), (30) and (35), 
the temperature field in the Laplace transform plane can be easily 
calculated as follows: 
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The temperature fields T(1)(z,t) and Ti
(2)(x,z,t) (i = 0,1,2) in the time-

domain can be obtained from T(1)*(z,p) and T(2)*(x,z,p)(i = 0,1,2) by use 
of the numerical inversion technique of the Laplace transform [24]. 

Thermally Induced Singular Elastic and Electric Fields 
The non-disturbed temperature field (1) ( )∗ ,T z p  given by Eq. (24) does 

not induce the stress and electric displacement components affecting 
the singular field. Thus, we consider the elastic and electric fields due 
to the disturbed temperature distribution (2) ( ) ( 0 1 2)∗ , , = , ,iT x z p i  only 
in this section. It is convenient to represent the solutions ( )∗ , ,ziu x z p , 
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the sum of two functions, respectively. 
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where (1) ( )∗ , ,ziu x z p , (1) ( )∗ , ,xiu x z p , (1) ( )φ ∗ , ,i x z p  are the particular solutions 
of Eq. (5) replaced ( )∗ , ,iT x z p  by (2) ( )∗ , ,iT x z p , and (2) ( )∗ , ,ziu x z p , 

(2) ( )∗ , ,xiu x z p , (2) ( )φ ∗ , ,i x z p  are the general solutions of homogeneous 
equations obtained by setting ( ) 0 ( 0 1 2)∗ , , = = , ,iT x z p i  in Eq. (5). In 
the following, the superscripts (1) and (2) indicate the particular and 
general solutions of Eq. (5). Substituting Eq. (38) into Eqs. (2) and 
(3), one can obtain the stress ( )σ ∗ , ,xxi x z p , ( )σ ∗ , ,zzi x z p , ( )σ ∗ , ,zxi x z p  and 
electric displacement ( )∗ , ,xiD x z p , ( ) ( 0 1 2)∗ , , = , ,ziD x z p i  expressions in 
the Laplace transform plane. 

Using the displacement potential function method and the Fourier 
integral transform techniques [21], the particular and general solutions 
can be obtained as follows: 
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2
(1) (1)
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s s

) exp ( ) exp( i )τ








 , | | + −  

ij ijp s f z h sx ds

  ( i = 0,1,2) (39)

6
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6
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( i = 0,1,2) (40)

where Aij (s,p) are the unknown functions to be solved. The functions
(1) (1) ( , )≡mij mijp p s p , fij ≡ fij(s, p) (m = 4,5,6, i = 0,1,2, j = 1,2) are given in 

Appendix C, and (2) (2) ( )≡mij mijp p s , γij ≡ γij (S) (m = 4,5,6, i = 0,1,2, j = 
1,2,….,6) are given in Appendix A of the previous paper [19]. The 
functions Fij (s,p) (i = 0,1,2, j = 1,2) are

2

0
1

( ) ( ) exp(i ) ( 0 1 2 1 2)ξ ξ ξ
=

, = , = , , , = ,∑ ∫
k

k

b

ij ijk ka
k

F s p R G p s d i j              (41)

Similar to the temperature analysis, the problem may be reduced to 
a system of singular integral equations by defining the following new 
unknown functions Gkm (x,p) (k = 1, 2, m = 1, 2, 3) [21]: 

0 0 0
1

( ) ( ) ( )
( ) ( 1 2)

0 ( )

θ θ∗ ∗∂  , , − , , < <  , = = ,∂ 
 −∞ < ≤ , ≤ < ∞ 

z k zk k k k
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u x p u x p a x b
G x p kx

x a b x
  (42)

0 0 0
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x p x p a x b
G x p kx

x a b x
  (44)

Making use of the first boundary conditions (9)-(11) with Eqs. 
(12) and (13), we have the following system of six singular integral 
equations for the determination of the unknown functions Gkm(ξ, p) (k 
= 1, 2, m = 1, 2, 3) 
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In the above equations, the kernel functions 
( ) ( ) ( 1 2 1 2 3)ξ, , = , , , = , ,n
jkmM x n k j m  are given by 
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 (51)

where the functions ( ) ( )n
jkmlZ s  and the constants ( ) ( 1 2 1 2 3)∞ , , = , , , = , ,n

jkmlZ n k l j m  
are given in Appendix D. The functions 0 0( )σ ∗ ,± ,T

zz x h p , 0 0( )σ ∗ ,± ,T
zx x h p  

and 0 0( )∗ , ± ,T
zD x h p , which correspond to the stress and electric 

displacement components induced by the disturbed temperatures 
(2) ( ) ( 0 1 2)∗ , , = , ,iT x z p i  on the z = ± h0 planes in the absence of the crack, 

are obtained as follows: 
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In Eqs. (52)-(54), the functions 0 ( ) ( 1 2 6), = , , ,T
jd s p j …  are also given 

in Appendix D. Of course, these components are superficial quantities 
and have no physical meaning in this analysis. However, they are 
equivalent to the crack face tractions in solving the crack problem by a 
proper superposition. The singular integral equations (45)-(50) are to 
be solved with the following subsidiary conditions obtained from the 
second boundary conditions (9)-(11). 

( ) 0 ( 1 2 1 2 3)ξ ξ, = = , , = , ,∫
k

k
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kma
G p d k m                (55)

To solve the system of the singular integral equations (29), (30) and 
(45)-(50) with the subsidiary conditions (35), (55), we introduce the 
following functions ( ) ( 1 2 0 1 2 3)ξΦ , = , , = , , ,km p k m : 
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Using the Gauss-Jacobi integration formula [22], the functions Φkm(ξ,p) (k 
= 1,2, m = 0,1,2,3) can be determined by solving the integral equations. 

The stress intensity factors ( )
IA ( )∗kK p , ( )

IB ( )∗kK p , ( )
IIA ( )∗kK p , ( )

IIB ( )∗kK p  

and the electric displacement intensity factors ( )
DA ( )∗kK p , ( )

DB ( )∗kK p  at 

the crack tips x = ak,bk on the z = θ0k (k = 1,2) planes in the Laplace 

transform plane may be, respectively defined and evaluated as: 
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Thus, the stress intensity factors ( )
IA ( )kK t , ( )

IB ( )kK t , ( )
IIA ( )kK t , ( )

IIB ( )kK t  

and the electric displacement intensity factors ( )
DA ( )kK t , ( )

DB ( )kK t  (k = 1, 
2) in the time-domain are 
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The values of them at t →∞  are given by 
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Numerical Results and Discussion 
For the numerical calculations, the material is considered to be 

cadmium selenide, with the following properties [2] are used properties 
of the FGPM plate at the plane z = 0: 
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Since the values of the coefficients of heat conduction for cadmium 
selenide could not be found in the literature, the value κ2 = κx/z = 1/1.5 
is assumed. 

To examine the effects of the crack geometry and material 
parameters on ( )

Aη
kK , ( )

Bη
kK  ( I II D 1 2)η = , , , = ,k , the normalized parameters 

( 1 2 0 1 2/ , / , / , / , / , /c h c h h h h h h h d h  and (βh, δh, ωh) are used. Because 
there are many geometric parameters, we focus on the influence of 
the crack distance parameter d/h and the material non-homogeneity 
on the fracture behavior. Thus it is supposed to be the crack location 
parameters h1/h = h2/h = 0.5 and the crack length parameters c1/h = 
c2/h. And the normalized non-homogeneous parameters βh, δh and ωh 
are assumed to be βh = δh = ωh. 

The electroelastic fields without cracks 
Figures 2a-2c indicate the normalized stress components 
0 0( ( )σ ,± , ,T

zz x h t
0 0 330 0( ))σ λ,± , /T

zx x h t T  and the normalized electric 
displacement component 0 0 0 0( ), ± , /T

z zD x h t p T  on the 0 2/ = ± .z h  planes 
in the strip without crack at various normalized time 2

0λ= /F t h  for 
the crack distance parameter d/h = 1.5, the crack spacing parameter 
h0/h = 0.2, the crack length parameter c1 /h = c2 / h = 1.0 and βh = 

1.0. Above mentioned before, these components are given by Eqs. (52)-
(54) and are superficial quantities. The maximum values of 0 0( )σ , ,T

zz x h t , 

0 0( )σ , ,T
zx x h t  and 0 0( ), ,T

zD x h t  are seen to occur at about F ≈ 0.5, whereas 

the maximum values of 0 0( )σ ,− ,T
zz x h t , 0 0( )σ ,− ,T

zx x h t  and 0 0( ), − ,T
zD x h t  

occur at   F→∞.

The static behavior of the stress and electric displace-
ment intensity factors 

Due to above discussion, the intensity factors of the upper crack 
would be larger than those of the lower crack, thus only the results 
for the upper crack will be shown. Figures 3a-3c show the effects of 
the material non-homogeneity βh and the crack distance d/h on 
the static values of the normalized stress intensity factors (1)

A( ( )η ∞ ,K
(1) 1 2
B 330 0( )) ( ) ( I II)η λ π η/∞ / = ,K T c  and the static values of the normalized 

electric displacement intensity factors (1) (1) 1 2
DA DB 0 0( ( ) ( )) ( )π /∞ , ∞ / zK K p T c  

for βh = -1.0,0.0,1.0 with h0/h = 0.3 and c1/h = c2/h = 0.5. The results 
for the cases of d/h→∞ and βh = 0.0 coincide with the results of single 
parallel crack [8] and with the results for the homogeneous case [14], 
respectively. The values of the intensity factors tend to increase/
decrease at first, reach maximum/minimal values and then decrease/
increase with increasing d/h. The absolute maximum values of the 
intensity factors tend to occur at about c1/h = d/h, and the interaction 
between the two cracks may vanish for the range 3c1/h<d/h. Moreover, 
it is evident that the intensity factors can be reduced by increasing 
the material property gradient of functionally graded piezoelectric 
materials. 
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Figure 2a: The stress component 0
T
zzσ on the z/h = ± 0.2 planes in the strip 

without crack.
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The transient behavior of the stress and electric 
displacement intensity factors 

Figures 4a-4c show the effect of the crack distance d/h on 
the transient behavior of the normalized stress intensity factors 

(1) (1) 1 2
A B 330 0( ) ( ) ( I II)η η λ π η/, / = ,K K T c  and the normalized electric 

displacement intensity factors (1) (1) 1 2
DA DB 0 0( ) ( )π /, / zK K p T c  are plotted 

versus F for βh = 1.0 with h0/h = 0.2 and c1/h = c2/h = 1.0. In these 
figures, the dashed, solid and dotted lines indicate the results for d/h = 
0.5,1.0 and 3.0, respectively. 

Similar to the static values of the normalized stress and electric 
displacement intensity factors, the interaction between the two cracks 
may vanish for 3c1/h = d/h, and the absolute values of the intensity 
factors become (1) (1)

A B ( I II,D)η η η| |=| | = ,K K . The absolute values of the 

intensity factors (1)
Aη| |K , (1)

B ( I II,D)η η| | = ,K  increase at first, have the 

peak values (1)
Aη| |peakK , (1)

B ( I II,D)η η| | = ,peakK , then decrease and approach 

the static values (1)
A ( )η| ∞ |K , (1)

B ( ) ( I II,D)η η| ∞ | = ,K  with increasing F. The 
value of (1)

IAK  (d/h = 0.5) becomes negative so that the contact of the 
crack faces would occur, and these results for F >1.3 have no physical 
meaning. As shown in the previous paper [18], the results presented 
here without considering this effect may not be exactly correct but 
would be more conservative, since the contact of the crack faces will 
increase the friction between the faces and make heat and electric 

transfer across the crack faces easier. Thus the intensity factors would 
be lowered by these two factors. 

Figures 5a-5c show the effect of the material non-homogeneity 
βh on (1) (1) 1 2

A B 330 0( ) ( ) ( I II)η η λ π η/, / = ,K K T c  and (1) (1) 1 2
DA DB 0 0( ) ( )π /, / zK K p T c  are 

plotted versus F for d/h = 0.0 with c1/h = c2/h = 1.0. In these figures, the 
solid, dotted and dashed lines indicate the results for βh = 2.0, 0.0 and 
-2.0, respectively. The results for the case of βh = 0.0 coincident with 
two parallel cracks [17] and with the results for the homogeneous 
case [18]. Because of symmetry, the values of (1)

AηK , (1)
B ( I D)η η = ,K  for 

βh = 0.0 approach zero and the values of the intensity factors are 
(1) (1)
A B ( I D)η η η= = ,K K  and (1) (1)

IIA IIB= −K K . The value of (1)
IAK  for βh = 2.0 also 

becomes negative so that the contact of the crack faces would occur. 

Figures 6a-6c are the same as Figures 5a-5c for d/h = 1.0. With 
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increasing F, the intensity factors (1)
AηK , (1)

B ( I D)η η = ,K  and (1)
IIAK  for βh 

= -2.0 increase monotonically, and then approach static values (1)
A ( )η ∞K , 

(1)
B ( ) ( I D)η η∞ = ,K  and (1)

IIA ( )∞K . On the other hand, the intensity factors
(1)
AηK , (1)

B ( I II)η η = ,K  and (1)
DBK  for βh = 2.0 have clear peak values, and (1)

IAK , 
(1)
IBK  for βh = 0.0 have slight peak values. In addition, these peak values, 

static values and the interesting values (1) (1) (1)
A A A( ( ) ) ( )η η η| − ∞ | / | ∞ |,peakK K K

(1) (1) (1)
B B B( ( ) ) ( ) ( I II,D)η η η η| − ∞ | / | ∞ | = ,peakK K K , which mean the overshooting 

effect, are presented in Tables 1-3. It is found that the peak values of the 
intensity factors and the overshooting effects increase with increasing 
βh.

Conclusion 
 The transient mixed-mode thermoelectroelastic fracture problem 

of a functionally graded piezoelectric material strip with two parallel 
cracks in arbitrary positions is studied theoretically. For the special 
cases of symmetrical geometry (h1/h = h2/h = 0.5 and c1/h = c2/h), the 
effects of the crack distance and material non-homogeneity on the 
stress and electric displacement intensity factors are clarified. The 
following facts can be found from the numerical results. 

For the case of the static behavior 

1. The increase of the material parameter is beneficial for reducing 
the static values of the intensity factors.

2. The absolute maximum values of the intensity factors tend to 
occur at about c1/h = d/h, and the interaction between the two cracks 
becomes 0 at about 3c1/h = d/h.
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For the case of the transient behavior 

1. The distinct overshooting phenomenon can be observed and this 
fact may suggest the importance of these transient analyses. 

2. The peak values of the intensity factors increase with increasing βh.

3. The overshooting effect depends on the crack distance and 
material non-homogeneity. The large βh induces the large overshooting 
effect. 
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