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In the post Human Genome Project era there are efforts to 
understand translation of the genomic sequence into the transcriptome. 
The human transcriptome is represented by >100,000 distinct transcripts 
presently described for ~20,000 protein-coding genes. Additionally, 
mRNA isoforms are produced by alternative processing of primary 
RNA transcripts. This alternative splicing affects >90% of the human 
genes and has been suggested to the primary driver of phenotypic 
complexity [1]. Despite this diversity in the coding sequence, the non-
protein-coding molecules contribute to > 95% of the transcriptome [2]. 
Numerous technologies and experimental platforms have facilitated the 
investigation of the complexity in the transcriptome that greater than 
that of the simple genome sequence. 

The recent RNA sequencing or RNA-Seq, involves high-
throughput sequencing of short cDNA fragments obtained from the 
pool of RNA (total or fractionated, such as poly(A)+ or ribosomal rna 
depleted) to provide single-base resolution to the transcriptome. The 
traditional expression analysis primarily addressed the identification of 
differentially expressed transcripts with respect to measured variables 
of interest, such as differing environments, treatments, phenotypes, 
or clinical outcomes. The advent of RNA-Seq has provided a broad 
spectrum of applications and enabled researchers to address a wider 
range of biological problems. This technology enables cataloguing all 
species of transcript, including coding and non-coding mRNAs; to 
determine the transcriptional structure of genes, splicing patterns and 
other post-transcriptional modifications. 

Despite, the breadth of possibilities RNA-Seq measurements and 
analysis of expression remains a field of active research. The major 
concerns and scrutiny is attributed to the numerous technical and 
analytical limitations. Early concerns regarding library preparation, 
sequencing error, read mapping, and gene expression quantification 
have been resolved by a number of studies; however, there is no 
standardized approach for quality control and data adjustment of RNA-
Seq data after the generation of gene expression estimates. As a caution, 
without an appropriate approach to data analysis, reproducibility of 
these studies remains limited [3]. There are numerous studies that 
are providing frameworks and strategies to assess possible sample 
contamination and assess the biologic validity of each data analysis step 
to ultimately enable confident downstream analyses [4]. 

An important consideration in gene expression is still the biological 
source for RNA profiling. To elaborate for disease relevant questions 
there is a clear and compelling need to conduct gene expression studies 
in tissues that are specifically relevant to the disease of interest as opposed 
to cell lines. It is reassuring that studies have reported that robust gene 
expression can be obtained using RNA from autopsy-derived tissue 24 
hours after autolysis [5]. However, examination of a tissue which is a 
heterogeneous mix of several distinct cell populations makes it difficult 
to distinguish whether gene expression variability reflects shifts in cell 
proportions or variable cell-type specific expression [6].

In addition to cell-type variability, gene expression data is also 
confounded by various known and unknown sources of variation such 
as batch effects, environmental influences and sample history. These 
unknown confounders that plague comparative expression analysis are 
not easily attributable to any recorded measurement. These unknown 
covariates can be approximated through various data decomposition 
methods, like Principal Components Analysis (PCA), Surrogate 
Variable Analysis (SVA) [7], Independent Surrogate Variable Analysis 
(ISVA) [8] and Probabilistic Estimation of Expression Residuals (PEER) 

[9]. This method can be used to correct for biases and provide accurate 
estimates of global comparison of gene analysis and for detecting 
genetic associations in expression data (eQTL) [4]. 

Although, there are suggestions to correct the variability of 
expression that may be caused by difference in cell-type proportions. 
Studies have reported that underlying mechanism in some human 
diseases are accompanied by changes of cell populations in 
corresponding tissues [10]. There are computational methods of 
analyzing gene expression in samples of varying composition that can 
improve analyses of quantitative molecular data in many biological 
contexts [6,11].  There is also the development of sequencing-based 
technologies that are increasingly being targeted to individual cells, 
which will allow many new and longstanding questions to be addressed. 

The maturation of single-cell transcriptomics should provide in-
depth knowledge of the precise transcript map and the regulatory 
landscape in individual single cells at different levels of resolution (single 
cell, cell-type or tissue). This level of resolution should be beneficial 
towards insightful biomarker discovery and disease diagnostics.
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