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Introduction
Benefits and challenges of pharmacosurveillance

Monitoring the outcomes for patient health of marketed drugs is an 
important tool to raise alerts and analyze adverse drug reactions. It also 
has multiple quantitative purposes related to that. It can establish the 
pharmacogenomics and relevant environmental factors to stratify the 
population into those who will be benefited and those who are at risk, 
which is important in repurposing and pricing drugs. In many ways 
it is an ongoing clinical trial on a vast scale, facilitated by the rise of 
the digital patient record to capture the essential data. Those and the 
following considerations have been reviewed by the author elsewhere 
[1]. Without doubt, the primary challenge for the data analyst per se 
in pharmacogenomics and pharmacosurveillance is the multiplicity of 
factors involved in expressing disease and adverse reactions, and that 
even govern diagnosis and how therapies are prescribed and used, 
and in drawing actionable inference from it. The multifactorial aspect 
shows up well in the epidemiological-geographical aspects. Whilst 
sickle cell anemia is due to a single mutation and originally followed 
the geographical distribution of malaria very well (since it conferred 
protection against it), the distribution of mutations of the serotonin 
transporter gene show little relation to the distribution of anxiety and 
depression in which anomalies of serotonin are strongly implicated, 
because anxiety and depression are polygenic diseases and strongly 
influenced by environment. Even if it did, prescription of appropriate 
drugs and their outcomes would not be good markers since the 
distribution of diagnosis of anxiety and depression is confounded by 
psychological and social factors and shows rather poor correlation with 
prescription even in highly industrialized welfare states. 

The scope of the multifactorial problem

Whilst admittedly behavioral disorders are extreme examples in 
that the brain is an exceptionally complex organ with correspondingly 
complex genetics, pathologies, and therapies, other complex diseases 

such as cardiovascular diseases and cancers have easily some n=100 
relevant causative factors. These cannot completely be broken down 
into n(n−1)/2 ≈ 5000 pair-wise independent and in some way additive 
contributions, but can theoretically represent up to some 2n potential 
quantitative parameters or rules to be discovered and combined for 
inference, prediction, and decision making [2,3]. For n=100, 2n is an 
astronomic 1030. The involvement of multiple factors with combinatorial 
considerations on such scales means that the consideration of the 
data must be very high-dimensional, and this high dimensionality 
is the dragon, essentially entropy, that guards the gold that the data 
otherwise promises [2,3]. Whilst classical statistics massively reduces 
dimensionality by focus on specific data features and testing hypotheses 
that inevitably represent some prior knowledge of what the answer is 
likely to be [2,3], data mining deliberately does not allow itself such 
luxuries, and focuses on finding what is not expected. Consequently, 
the challenge rises explosively with the dimensionality that needs to be 
considered, and special techniques have to be developed to handle the 
higher dimensional cases [4-8].

The sparsity problem 

In a curious irony, however, the very high dimensionality of the data 
removes much of the problem from our hands. We do not have enough 
computer power to handle this kind of big data and the combinatorial 
explosion of its factors. However, we do not have enough data to run 
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very far into that barrier. In data mining 667,000 medical records, there 
was simply no data for parameters or rules with more than some 5-10 
factors [8], depending of course on the individual abundances of the 
factors. Even data mining some 6.7 million records (albeit in this case 
relating to chemical patents) does not greatly alleviate that problem [9]. 
There is no benefit in the data analyst anguishing over what he or she 
does not yet have. On the other hand, there is a problem at the ever-
growing boundary between plentiful data and none. The combinatorial 
character of the problem means that the great majority of occurrences 
that are seen involve just some one or two observations. These can only 
be ignored at the diligent data analyst’s peril. They contain information, 
and though it is individually weak information, many such contributions 
can in principle add up to outweigh a prediction or decision made on 
the basis of parameters or rules with few factors and many observed 
occurrences. This, along with the matter of rules with zero occurrences, 
may be described as the sparsity problem. It is addressed below, but 
specific number-theoretic tools, providing algorithmic tools for coping 
with it, are described elsewhere [6].

The four pillars of evidence 

Strangely enough, inference from the quantitative rules obtained 
by data mining often neglects evidence for which data is typically 
abundant, and which is fundamental in a court of law: the evidence that 
something is not the case. Whilst it is true that probability P(A) itself 
implies 1−P(~A) where ‘~’ can be read as ‘not’, and as indicating the 
commentary state to A, specifically neglecting probabilities involving 
~A can dramatically change things, especially in necessarily making 
approximation and assumptions due to data sparsity and when ~X 
itself is supported by a chain of probabilistic reasoning involving many 
factors. Pharmacoepidemiology is the study of the use of and the effects 
of drugs in large number of people [10,11], rooted in the epidemiology 
that did recognize this principle from the outset. In the 1830s, John 
Snow considered himself as the leading expert on the biological effects 
of gasses, and used his pioneering experience in the quantification of 
the anesthetic effects of ether and chloroform, and careful use of maps 
and statistics, to disprove the miasma or “bad gas” theory as a basis for 
cholera. However, the importance of his contributions to principles of 
“negative evidence” runs deeper than that. If it be historically argued 
that there were degrees of awareness of the following considerations 
before now, it certainly appears to be the first time on record that such 
considerations (and statistics expressed on maps) swayed skeptical 
government authorities. Snow traced the origins of cholera to the water 
supply, in that case a specific pump in Broad Street, Soho, London [12] 
and because his partner in investigation, the Reverend Whitehead, 
objected that he had drunk from the Broad Street pump and did not get 
cholera, and evidently many who did not live close to the pump did, the 
issue soon became one of establishing four kinds of evidence. These were 
the number that actually drank from the pump and got cholera, and the 
number that actually drank from the pump and did not got cholera, 
and no less importantly the number that did not drink from the pump 
and got cholera, and the number that did not drink from the pump 
and did not get cholera. These numbers appeared to differ significantly 
from what would be expected on a chance basis, though quantifying 
that notion of significance would have had to await the development of 
the chi-squared test. This thinking underlies our perception of the four 
pillars of probabilistic evidence, P(A, B), P(A, ~B), P(~A, B), and P(~A, 
~B) respectively. It is of course from these that we now obtain multiple 
measures: odds as likelihood ratios (such as relative risk), predictive 
odds, odds ratios, and absolute risk reduction, and Number Need to 
Treat and Number Needed to Harm. They also underlie the measures of 
predictive power of a theory, a diagnostic or statistical test, or a decision 

support system (accuracy, sensitivity, specificity, LR+, LR-). The notion 
of tradeoff between aspects of performance highlighted by these 
measures, such as sensitivity and specificity, lead in the Second World 
War to the idea of “tuning” to optimal performance, e.g. the use of the 
ROC curve [13] initially to improve the ability of radar to distinguish 
British and German aircraft. 

Issues addressed here

Despite the widespread use of the above as measures, we do not 
typically see inference networks of any degree of elaborateness that 
specifically include the kind of information (relating to the four pillars 
of evidence) that these measures contain. Here some basic principles are 
outlined that address that neglect, including the impact of the sparsity 
problem. In addition, there is the problem that in combining all the 
four pillars of evidence in a classical way, information about direction 
of conditionality, important in inference about potentials causes or 
etiology, is lost. This is also addressed. The present report is concerned 
with highlighting some fairly new and relevant tools in introductory 
overview, tools that should help fix these issues. Detailed application 
will be reported elsewhere. 

Theory
Basic principles: information theory

For completeness and to establish the current notation, we may start 
on familiar territory. Though the word “information” is often used rather 
qualitatively in the above context, it is well known that it is quantifiable 
from the probabilities by counting in the classical (“frequentist”) way, 
providing the amount of data is large. For example, the probability of an 
adverse drug reaction A conditional upon being administered drug B is 
P(A|B)=n(A, B) / n(B) where n(A, B) is the number of joint occurrences 
A and B and n(B) is the number of occurrence of B with or without A. 
Then I(A|B) = −logeP(A|B). Typically, however, it is useful to start as 
much as possible from Fano mutual information I(A; B), which is the 
logarithm of an association constant K(A; B)=P(A, B)/P(A)P(B), and 
has the following useful definitions and equalities.

e e e

e e

e e

I(A;B) = log P(A,B) - log P(A) - log P(B)
= log P(A B) - log P(A)

= log P(B A) - log P(B)
= I(A) + I(B) - I(A,B)

An example measure derived from mutual information terms is 
as follows. It includes the evidence I(~A; B) against A as information 
which, like I(A; B), may be positive or negative, but which is subtracted 
in either case. It has the following useful definitions and equalities. 

e e e e

e e

I(A : A; B) = I(A; B) - I( A; B)
= log P(A, B) - log P( A, B) - log P(A) + log P( A)

= log P(B A) - log P(B A)

= I(B A) - I(B A)
= I(A : A, B) - I(A : A)

∼ ∼
∼ ∼

∼

∼

∼ ∼

(1)

Nonetheless, this is not, at first, an obvious choice of starting point. 
It is a log likelihood ratio, which is frequently applied as a relative risk. 
We might therefore perhaps have expected to see the log of P(A|B)/
P(A|~B) with, say, A as a new condition of ill health and B and ~B 
as administration of the drug and not, respectively. In addition, the 
second last equality I(B |~A)−I(B | A) looks more like a prediction of 
the etiology or cause B of A, given A and ~A. The point is that this 
measures abstracts the information I(A: ~A)=logeP(A)+logeP(~A). 
Restoring the abstracted information, possibly as a new value, puts 
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I(A: ~A) in the role of prior information, in which case I(A: ~A, 
B)=I(A: B) – I(~A | B) plays the role of posterior information. Hence 
the exponential of the above reflects use of Bayes equation, posterior-
probability=likelihood×prior-probability, extended to include 
the contrary evidence from ~A. In this kind of usage, Equation 1 
demonstrably has predictive power in clear-cut test cases where we have 
plentiful well defined data for input and outcomes. It was essentially the 
basis of the GOR (Garnier-Osguthorpe-Robson) method [14] based on 
a theory of expected information first developed by the present author 
[15-16], widely used in protein bioinformatics and more recently 
appearing with applications in clinical informatics [8]. The method 
[15,16] is now seen as Bayesian [14], and represented an early use and 
possibly first use in molecular biology and biophysics when Bayesian 
methods were unpopular, then being considered subjective. The real 
strength as illustrated in the publications [6,7] is that it is easy to add 
in further evidence from different sources within the information-
theoretic formalism. A very simple example is 

}{ ii=1,2,3,...

e i e i e ei=1,2,3,...

I(A : A; X ) = [I(A : A; X ) - I(A : A)]

= [log P(A, X ) - log P( A, X ) - log P(A) + log P( A)

∼ ∼ ∼

∼ ∼

∑
∑    (2)

Strictly speaking, the summed terms require an added decision 
constant to be optimized for a complicated system [14-16]. It is a first 
order estimate of the accumulative evidence from various contributions 
{X} of which B was just one contribution. I(A: ~A) as prior information
was replaced by an optimized decision constant in the bioinformatics
application. The following is an example of an exact expansion.

 }{I(A : A; X ) = I(A : A;B) + I(A : A; C B) + I(A : A,D B, C)..... - I(A : A)∼ ∼ ∼ ∼ ∼        (3)

It can be rewritten in many ways, e.g. starting with I(A: ~A; D), 
and with I(A: ~A; F|D) as the second term. We can actually include 
all possible terms for which we have data, which did not explicitly 
appear in some of these expansions. This is done by adding up all the 
possible expansions, and generating an average expansion in which 
each term I is weighted down by a simple combinatorial factor, or more 
generally how many times it repeats in all the terms available. It must 
suffice to say that the final effect is essentially the same idea as that used 
conceptually in Bayes Nets, prior to dismissing and simplifying terms 
to make approximations. Equation 2 is really an example of such an 
approximation in log form and extended to include contrary evidence. 

Even just considering A and B, i.e. I(A: ~A; B) this does not include 
all the information that is for and against A. It uses only two of the four 
pillars of evidence. P(A, ~B) like P(~A, B) is also contrary evidence. 
The “double negative” P(~A, ~B) is evidence in favor of A. Possibly 
counterintuitive, the latter is hinted in the semantic equivalence 
of “All A are B” and “All non-B are non-A” by the logical law of the 
contrapositive, and relate to P(B | A) and P(~A | ~B) respectively. These 
two statements are guaranteed to be equivalent in probability, however, 
only when the probabilities are 1, i.e. under certainty, and a simple 
“proof ” is that otherwise P(~A, ~B) would not be needed and would 
represent redundant information in an odds ratio. The log odds ratio is

e e e e

I(A : A; B : B) = I(A : A, B) - I(A: A, B)
 = I(A,B) - I( A, B) I(A, B) + I( A, B)
= log P(A,B) - log P( A,B) - log P(A, B) + log P( A, B)

∼ ∼ ∼ ∼ ∼
∼ − ∼ ∼ ∼

∼ ∼ ∼ ∼
(4)

Some inspection will show that the expansion and act of combining 
evidence is more difficult here, because the negation ~B then relates to 
the joint probability of all the states combined, ~(B, C, D,…). However, 
this is usually immaterial. That is because, if we have a lot of alternatives 
to B to introduce in combining evidence, noting that P(A, ~B)=P(A)− 

P(A, B) and P(~A, ~B)=P(~A) − P(~A, B), then P(A, ~B) ≈ P(A) and 
P(~A, ~B) ≈ P(~A). This therefore reduces to the log likelihood ratio 
of Equation 1. 

e e e e

I(A: ~A; B: ~B) = I(A: ~A, B) - I(A: ~A, ~B)
 = I(A, B) - I(~A, B) - I(A, ~B) + I(~A, ~B)
® log P(A, B) - log P(~A, B) - log P(A) + log P(~A) = I(A: ~A; B)

(5) 

Although symbol® was originally a typesetting error, the author 
decided to retain it!  It can be read as “reaches”, and the problem 
otherwise is that symbols for “approximates” or “converge to” do not 
quite capture the full story! I(A : ~A; B : ~B) approximates and converges 
to the log probability expression calculated classically from numbers of 
observations when data becomes indefinitely large, and when B  is really 
a complex event such as (B, C, D,…) with increasingly many factors B, 
C, D,…. Plus, (for full understanding of the present meaning)  it more 
smoothly converges when information I is redefined in terms of zeta 
functions as described below, all the above being the case  at the same 
time. There is symmetry, however, because a priori, in looking in both 
directions of conditionality, and making no mathematical distinction 
between A and B, a similar argument to the above could apply to ~A.

e e e e

I(A: ~A; B: ~B) = I(A: ~A,B) - I(A: ~A, ~B)
 = I(A,B) - I(~A,B) - I(A, ~B) + I(~A, ~B)
®log P(A,B) - log P(A, ~B) - log P(B) + log P(~B) = I(A; B: ~B)

(6) 

Sparsity theory: finite data and expected information 

Before proceeding, an important digression is that we never have 
complete information such as I(A; B) but only its estimate E(I(A; 
B)|D(A, B)) based on the data D(A, B) about A and B. It should be 
less available information if we have less data, converging to zero 
information when we have no data, and converging rapidly to I(A; B) as 
we would calculate it classically via P(A, B), P(A) and P(B) when data 
becomes indefinitely large. It should correspond to the expected value 
over all the values of the information measure according to the differing 
degree of belief that we hold, according to the data available [16]. This 
implies an integration [16] that leads to results later described in terms 
of the “incomplete” Riemann Zeta Function [6].

-si=1,2,3,....n i
(s, n) =ζ ∑   (7)

Here s=1 is of most interest, which relates to the natural logarithm, 
so that the sum is 1+ ½ + ⅓ +… 1/n, and n>0 on the understanding 
that with no summation and hence n=0, then ζ(s,n)=0. It emerges that 
simply adding or subtracting from n allows prior belief to be included. 
Putting that aside, it appears to reflect the amount of information in a 
system that is actually available to the observer via the data. It is thus 
expressed as the unqualified measure I(A; B) redefined, rather than by 
writing E(I(A; B) | D(A, B)) which suggests an arbitrary estimate. The 
redefinition is

eI(A; B) = (s=1, o[A,B]) - (s=1, e[A, B]), log (P(A, B) / P(A) P(B), o[ ]ζ ζ → →∞ (8)

Where o[ ] is the observed frequency (number of observations) and 
e[ ] is the expected frequency, as these senses are also used in the chi-
squared test. For example, e[A, B]=o[A]o[B]/N=o[A]P(B)=P(A)o[B]. 
It should be declared that we ignore the Euler-Mascheroni constant γ 
defined as γ=ζ(s=1, n)−logen, n →∞, on two grounds. First it effectively 
cancels in Equation. 8, and second, and more to the point, it is here the 
definition of I(A; B) in Equation 8. I(A: ~A; B) thus becomes
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( ) [ ]( ) [ ]( )
[ ]( ) [ ]( )

( ) ( )( ) [ ]e

I A : A; B  = s = 1, o A, B   - s = 1, e A, B  

- s= 1, o A, B  + s = 1, e A, B ,

  log P(A,B) P A  / P( A,B) P A  ,    o   

∼ ζ ζ

ζ ∼ ζ ∼

→ ∼ ∼ →∞

(9)

Theory of directional conditionality

 Though physics is beyond present scope, causality theory, 
conditional directionality, and handedness are the core elements of 
quantum field theory. The current importance is that an algebraic entity, 
here called ι, relates to the Dirac spinor (essentially a linear operator 
with eigensolutions 0 and 1), with the following simple application. 

For any real-valued scalar which has a symbolic adjoint such as 
for example conditional probabilities P(A|B) and P(B|A), it may be 
rendered as having an algebraic complex adjoint by writing say ι*P(A|B) 
+ιP(B|A) such that (ι*P(A|B) + ιP(B|A))* = ι*P(B|A) + ιP(A|B).

The asterisk indicates complex conjugation which changes the
sign of the imaginary part. Here one sees empirical probabilities 
replacing the exponentials that represent statistical weights in quantum 
mechanics, which are in contrast calculated ab initio. We could have 
written ιP(B|A)+ι*P(A|B) as long as we internally consistent. As a 
tool for biomedical inference, the above thinking was introduced by 
the present author [17-19], who initially used the choice ι√P(B|A) 
+ι*√P(A|B) [17]. The form ι*P(B|A)+ιP(A|B) is preferred for
consistency with physics. Briefly, the older choice would arguably lead
to non-physicality in applying a recipe due to Dirac (ket normalization)
when A and B are conjugate variables, and extension of that recipe to
the current algebra also suggests that square roots are not required.  To
avoid such issues, we can start from several points, physical or better
still, purely mathematical. As an excuse for addressing an area of
research into counting, sampling, and data analytics that could emerge
as of importance; we may start from our zeta function, which also has
the arguable benefit of being purely a mathematical approach. In ζ( ),
s=1 is not the only choice of s, though we would not in general speak
of it as expected information, but rather as some measure of surprise,
or as internal moments of the expected information [6] The most
surprising choice of interest is however one that involves an imaginary
number, and not just the more familiar i such that ii=−1, but rather the
hyperbolic number h such that hh=+1. In the guise of Dirac’s linear
operatorι σ with eigen values −1, and +1, and γtime, and γ5, such
hyperbolic imaginary numbers are fundamental to theoretical physics.
Distinguish  h above from Planck’s constant; if that coexists in physical
equations, our h is written h. Note that:-

-( +ht)
x=1...n

- +htloge x
x=1...n

-s -tloge x +tlogex
x=1...n

-ó-t -ó+t
x=1...n x=1...n

(s = + ht, n)   = X

= X e

= x ½ [ *e   + e  ]

= * X + X

= * (s = +1, n) = + (s = - t, n)
= ½( (s = + t, n) + (s = - t, n) +½h( (s = - t, n) - (s = + t,

σ

σ

ζ σ

ι ι

ι ι

ι ζ σ ιζ σ
ζ σ ζ σ ζ σ ζ σ

∑

∑
∑
∑ ∑

n))

 (10)

Here ι=½ (1+h), ι*=½ (1 + h), is seen as also a convenient notation. 
It is thus simple to find values of the incomplete (n<∞) and complete 
(n=∞) zeta function with h-complex values of s of interest, from the 
values for real values s=σ + t, s=σ−t. For example, ζ(s=1+h,n)=½(π2/6 
−1/2) + ½h (ι1/2−π26)=ζ(s=1+ h, n)=(π2−3)/12–h (π2+3)/12, n →∞.
From the above it can be seen that there are whole classes of functions
that can be similar decomposed into components that are coefficients of
ι* and ι, most notably for any real value of σ, t, w, x, y, z,

 

x x x

+ht -t +t

( + ht) = *( - t) + ( + t)

x = * x + x
*(w + x) + (y + z) = ( * w + y) + ( * x + z)

wx yz w y x z

σ σ σ

σ ι σ ι σ

ι ι
ι ι ι ι ι ι
ι∗ + ι = (ι∗ + ι ) (ι∗ + ι )

Maclaurin series expansions of trigonometic function show that 
cos(hx)=cos(x), sin(hx)=hsin(x), tan(hx)=htan(x), and note that hi=−
ih where ii=−1  Importantly, for any function f, note f(x + hy)*=f(x−hy) 
and f(ί*x+ίy)*=f(ίx+ί*y).  Some above seem exotic cases, but throughout,  
whatever probabilistic system is being modeled and however modeled, 
ι and ι* are important as putting causes on an equal footing with 
consequences,  and of monitoring their mutual consistency and 
coherence (see below) with respect to available data, all of great concern 
in making pharmacological sense out of pharmacosurvelliance, 

Directionality in terms of zeta functions

The follow Sections give a brief flavor of the kind of research being 
carried out with the use of the above kind of thinking. Although an 
odds ratio converges to a likelihood ratio in the sense described earlier 
above, it does not preserve information regarding conditionality 
between A and B. To help establish etiology (cause) we need to handle 
two directions of conditionality and keep them distinct. For brevity it 
must be stated simply that attempts to build suitable expressions from 
the bottom up either end in containing a difference between I(A; B) 
and I(~A; ~B) where as discussed above the “double negative” should 
be supportive evidence and of same sign as I(A; B), whereas simply 
replacing the terms of the log odds ratio itself leads to cancellations of 
directional components so that the result is a purely real value and the 
original log odds. In the latter case we have

 { } { }A: A | B : B   =  B : B | A : A
= (s =1, o[A,B]) + (s =1, o[ A, B]) - (s =1, o[A, B]) - (s =1, o[ A,B])

∼ ∼ ∼ ∼

ζ ζ ∼ ∼ ζ ∼ ζ ∼ (11)

Seeking the right form is thus not trivial. However, Equations 5 and 
6 provide the clue. We can indeed capture these as two directions of 
conditionality.  It is easy to show that we can redefine our real valued 
log odds ratio as

[ ]( )
[ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

{B: B A: A}= s =1, o A, B  ]

- * [ s =1, o A, B    +  s =1, o A    - s =1, o A  ]

+   [ s =1, o A, B   +  s =1, o B   -  s =1, o B  ]

∼ ∼ ζ ∼

ι ζ ∼ ζ ζ ∼

ι ζ ∼ ζ ζ ∼

  (12)

The term with [A, B] stays real because ι*x + ιx=x. Note that since 
we have both directions of conditionality encoded, we could define 
either direction as the key one of interest. In any event, it is subject to 
complex conjugation: {A: ~A | B: ~B}={B: ~B | A: ~A}*. Note also that 
the value of the above Equation 12 is purely real only if the contents of 
ι*[ ] and ι[ ] are equal in value. 

The above is in some respects merely one example. For one thing, 
we could add in the real value ζ(s=1, o[~A, ~B]) to recapture that 
double negative contribution, but this would require renormalization, 
a need detectable by the fact that no zeta function is subtracted from it. 
The following appears to be a good approximation in many cases.

{B : B A: A} (s =1, o[A,B]) + (s =1, o[ A, B]) - (s =1, e[ A, B])
- *[ (s =1, o[ A, B]) + (s =1, o[A]) - (s =1, o[ A])
- [ (s =1, o[A, B]) + (s = 1, o[B]) - (s =1, o[ B])

∼ ∼ = ζ ζ ∼ ∼ ζ ∼ ∼

ι ζ ∼ ζ ζ ∼
ι ζ ∼ ζ ζ ∼

  (13)

Note that ζ(s=1, o[A, B]) + ζ(s=1, o[~A, ~B])ι− ζ(s=1, e[~A, ~B]) is 
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not itself directional, as it is purely real valued: it is the single negations 
that here provide directionality. By itself it is not normalized, though 
ζ(s=1, o[A, B])ι− ζ(s=1, e[~A, ~B])ι+ ζ(s=1, o[~A, ~B]) − ζ(s=1, e[~A, 
~B]) would be. 

Inference with negative evidence 

The above directional form {B: ~B | A: ~A} is of little practical 
interest in isolation, but becomes very important in bidirectional 
inference networks, allowing inference about etiology. That form can 
be used in an inference network in the conceptual place of a conditional 
probability as it appears in a Bayes Net [20]. A very simple example is 
the chain rule of epidemiology, re-expressed with negative evidence. 
We see this in the mortality rate for an infectious disease.

P(death|complications)×P(complications|symptoms)×P(sympto
ms|infected)×P(infected|exposed)×P(exposed) which more generally, 
and in log form with negative evidence, may be represented

{ } { } { }Z : Z  Y: Y  + Y: Y | X: X   … + C: C | B: B   + {B: B | A: A}∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

This uses Eqn. 13 for the terms { | }, but it  applies to a number of 
similar treatments that will be described elsewhere. To include priors 
in both directions of conditionality and to give the counterpart of a 
joint probability estimated by a Bayes Net, the counterparts of prior 
probabilities need to be included, and the joint probability turns out to 
be as follows.

I(Z: Z) +{Z: Z Y: Y}+{Y: Y X: X} ...+{C: C B: B}+{B: B A: A}+ *I(A: A)ι ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ι ∼

An inference computation can be said to be coherent if it reflects 
Bayes theorem P(A|B)P(B)=P(B|A)P(A), which ironically is not 
represented in a traditional Bayes Net because it considers only 
forms in one direction of conditionality exemplified by P(B|A)P(A). 
Without negative evidence included this means that the resulting 
value of a network based on the above ideas and seeking to estimate 
a joint probability would be purely real valued. The imaginary part is 
the degree to which coherence is not satisfied, including by the way in 
which we may estimate negation. The simplest fix is therefore to take 
just the real part as the joint probability estimate, which corresponds 
to taking the simple arithmetic mean or average of the values of the 
network in each direction of conditionality. We can see this in ι *P(A|B) 
+ιP(B|A)=½[P(A|B)+P(B|A)] + ½ h[P(B|A) – P(A|B)], i.e. ½[P(A|B)
+P(B|A)] is the real part Re(ι*P(A|B)+ιP(B|A)), whilst ½[P(B|A)–
P(A|B)] is the imaginary part Im(ι*P(A|B)+ιP(B|A)). This “average
direction” recipe also applies to Re(ι *P(B |~A)+ιP(A |~B)), which is a
good approximation if P(B |~A) ≈ P(A | ~B). It reflects the logical law of
the contrapositive, e.g. P(“If x is not an odd number, then x is divisible
by 2”)=P(“If x is not divisible by 2, then x is an odd number”)=1, i.e.
true in the case of certainty, and approximately true in near-certainty.
But note “If there was no adverse reaction A, then drug B was used by
the patient”, and “If drug B was not used by the patient, then there was
an adverse reaction A.” Evidently, in the second statement the patient
may have used drug C, which did not have adverse reactions, or no
drug at all. Combining as inference from multiple contributing factors
with inclusion of many independence assumptions, as a Bayes Net
typically does, will run into this complication when ways to include
negative evidence are found.

Non-Linear inference networks

Again, a more detailed analysis will be given elsewhere; for some 
degree of completeness the following taste of the considerations needed 
must suffice. Branches need more extensive explanation because 
Bayes Nets make certain independency assumption that shows have 

impact when we are considering information in both directions of 
conditionality. For example, P(A| B, C) P(B | D) P(C | E) considers B 
and C as interdependent in one direction of conditionality, to the right 
of the conditional bar ‘|’ in P(A | B, C), but independent in the product 
P(B | D) P(C | E) where they appear to the left of the conditional bar. 
To give balance overall may either make a correction that makes the 
independence assumption interdependent, or vice versa. The latter is the 
better choice, since the data is evidently available to make it, and it does 
not lose information. Briefly, correction is implemented by ι*+ιeI(B; 
C) in the directional counterpart of a Bayes Net, as will be described
elsewhere, and by due attention to the term I(B; C) in the present case.
The procedure of taking the real part discussed above should be done
after this “due attention to the term I(B; C)” and similarly throughout,
else we discard information in one direction that is explicit or implicit
in the other, and hence available.

The above, as cautioned at the outset, is only an outline, and barely 
a declaration of the importance and interrelationships of the tools 
with some detail added to convey the flavor. Details will be described 
elsewhere as they involve considerable discussion. Not least, cyclic paths 
in an inference network do not appear to constitute a problem, which is 
not the case in a traditional Bayes Net [20]. Like joint probabilities, truly 
cyclic paths comprised of h-complex probabilities or their logarithms 
are ideally purely real valued, 

e e

e

*log P(A B)P(B C)P(C D)P(D A) + log P(A D)P(D C)P(C B)P(B A)
= log P(A,B)P(B,C)P(C,D)P(D,A) / P(A)P(B)P(C)P(D)

ι ι   (14)

although the inclusion of an estimate of the negative evidence may 
prevent that. Note that the real part −ιζ(s=1, o[B])+ζ(s=1, o[~B])] in 
Equation 13 reflected the need to remove the arguments of factors that 
occur more than once, and the above normalization by P(A)P(B)P(C)
P(D) in Equation 14 plays a similar role.

Discussion and Conclusions
A broader unified approach may be possible involving the four 

pillars of evidence, information and decision theory, the Riemann 
Zeta function, and hyperbolic-complex algebra. Though much remains 
to be done, it at least seems clear that there is evidently still space for 
exploring some ideas founded in 19th century epidemiology. When 
discussing such theoretical matters in a specialized journal as this, 
the question arises as to whether the tools they imply, if accepted, are 
especially relevant and possibly even exclusive in importance to the 
field represented. As to some anecdotal evidence of direct and specific 
relevance, all references to the author’s recent work given here have 
been specifically concerned with tackling genomic, proteomic and 
clinical data issues. Such areas are certainly major drivers of research 
and development of data mining and inference from it [1-3,6,21,22]. 
However, it may be big money and life-and-death issues that combined 
put them, or should put them, amongst the most critical considerations 
in pharmaceutical science and related biomedical research [6].
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