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Introduction 
The problem on laminar mixed convection in cavities has multiple 

applications in the field of thermal engineering. Such problems are 
of great interest, for example in electronic device cooling, high-
performance building insulation, multi shield structures used for 
nuclear reactors, food processing, glass production, solar power 
collector, etc. Numerous studies on lid-driven cavity flow and heat 
transfer involving different cavity configurations, various fluids and 
imposed temperature gradients have been continually published in the 
literature.

The numerical simulations of Moallemi and Jang [1] focused on 
two-dimensional laminar flow induced by Reynolds number 100 
≤ Re ≤ 1000, and small-to-moderate Prandtl number 0.01 ≤ Pr ≤ 50 
on the flow and heat transfer features in a cavity for different levels 
of the Richardson numbers. These authors found that the influence of 
buoyancy on the flow and heat transfer are to be more pronounced for 
higher values of Pr, if Re and Gr are kept constant. 

Sharif [2] performed a numerical investigation with flow 
visualization of laminar mixed convective heat transfer in two-
dimensional shallow rectangular driven cavities of aspect ratio 10. 
The top moving plate of the cavity is set at a higher temperature than 
the bottom stationary plate. The fluid Prandtl number is taken as 
6, representative of water. The effects of inclination of such a cavity 
on the flow and thermal fields were also investigated for inclination 
angles ranging from 0° to 30°. It was concluded that the average or 
overall Nusselt number increases mildly with cavity inclination for 
the dominant forced convection case dictated by Ri=0.1. In contrast, 
it increases much more rapidly with inclination for the other dominant 
natural convection case dictated by Ri=100.

Prasad et al. [3] numerically studied mixed convection inside 
a rectangular cavity where the two vertical walls are maintained at 
cold temperature. In one case, the top-moving wall is maintained at 
hot temperature and the bottom is at a cold temperature and in the 
other case, the top is at a cold temperature and the bottom is at a hot 
temperature. They concluded that when the negative   is increased, a 
strong convection is manifested for aspect ratios equal to 0.5 and 1.0. 
Even more, a Hopf bifurcation occurs at   for the aspect ratio 2.
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Abstract
To study the intlicate three-dimensional flow structures and the companion heat transfer rates in a differentially 

heated lid-driven cubic cavity, a numerical methodology based on the finite volume method and a full multigrid 
acceleration is utilized in this note. The four remaining walls fowling the cubic cavity are adiabatic. The working fluid 
is air so the Prandtl number equates to 031. Numerical solutions are generated for representative combinations 
of the controlling Reynolds number inside 100<Re<1000 and the Richardson number inside 0.001<Ri<10. Typical 
sets of streamlines and isotherms are presented to analyze the tortuous circulatory flow patterns set up by the 
competition between the forced flow created by the moving wall and the buoyancy force of the fluid. Correlations 
between the average Nusselt number through the cold wall and the Richardson number were established for the 
mentioned Reynolds numbers.

Mohammad and Viskanta [4] numerically examined two and 
three-dimensional laminar flow and heat transfer in a Rayleigh-Bénard 
container. They established that the lid motion annihilates all forms of 
convective cells due to heating from below for finite size cavities. Aydin 
et al. [5] conducted a numerical investigation to analyze the transport 
mechanism of mixed convection in a shear and buoyancy-driven 
cavity having a locally heated lower wall and moving cooled sidewalls. 
In addition, other numerical studies such as Han and Kuehn [6] and 
Oztop and Dagtekin [7] were carried out on this topic.

Iwatsu et al. [8] performed a numerical investigation on the effect of 
external excitation on the flow structure in a square cavity. The results 
have shown similar flow structure to steady driven-cavity flows when 
utilizing small frequency values. Such a similarity, however, vanished 
when large frequency values were implemented. A subsequent work by 
Iwatsu et al. [9] carried out a numerical study of the viscous flow in a 
heated driven-cavity under thermal stratification, where the oscillating 
lid was maintained at a temperature higher than the lower wall. Their 
collection of results had revealed significant augmentation in heat 
transfer rate at particular lid frequency values, which convincingly 
indicates the existence of the resonance phenomena.

A detailed literature survey reveals that the majority of 
existing numerical investigations are restricted to two dimensional 
configurations. In this vein, 2D models are deficient because they do 
not always realistically capture the intricacies inherent to the flow 
behaviour. Because of these shortcomings, 3D models have to be 
undertaken to guarantee accuracy. A limited number of articles falls 
into this general category and has been reported in the literature. 
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Among others, Iwatsu [10] numerically studied three dimensional 
mixed convective flows in a cubical container with a steady vertical 
temperature stratification. He observed that the three dimensional 
effects are intensified as Re increases. Mohammad and Viskanta 
[11] conducted three-dimensional numerical simulation of mixed 
convection in a shallow driven cavity heated from the top moving wall 
and cooled from below. The cavity was filled with a stably stratified 
fluid encompassing a relative large range of Rayleigh and Richardson 
numbers. In a consecutive number of papers, Freitas et al. [12] and 
Freitas and Street [13] carried out a numerical study of the viscous 
flow in a rectangular cavity of depth-to-spanwise aspect ratio 3 at. They 
discovered the existence of meridional vortices and considerable flow 
unsteadiness.

  In view of the foregoing statements, it seems that the 
problem of three dimensional laminar mixed convection heat transfers 
in a differentially heated lid-driven cubic cavity has not been addressed 
yet. In this paper, we undertake this task varying the Reynolds number 
in the Re-interval and the Richardson number in the Ri-interval   for 
air (Pr=0.71) as the working fluid. The transport processes will be 
investigated with the finite volume method and the discussion will 
revolve around the precise determination of steady velocity and 
temperature fields. In addition, the average Nusselt number will be 
documented for all cases studied.

The paper is organized as follows: in the second section the physical 
system is formulated; the numerical methodology is briefly described 
in the third section and subsequently validated. The computed results 
are presented and discussed in the fourth section. In the final section, 
the most important findings of this study are summarized.   

Physical System 
The physical system under study is sketched in Figure 1. It basically 

consists of a cubic cavity with side filled with air. The applicable flow 
and temperature boundary conditions are described next. The top lid 
imparts a steady sliding motion with a uniform velocity, while the other 
walls are stationary. The cavity is differentially heated over the vertical 
sides. The left hot wall has a temperature and the right cold wall has a 
temperature where in. In addition, the remaining walls are considered 
adiabatic.

Numerical Methodology and Algorithm Validation 
The governing equations for unsteady, incompressible laminar 

flow consist of the continuity equation, the Navier–Stokes equations 
accounting for the Boussinesq approximation and the energy equation. 
The non-dimensional equations are collectively written in tensor 
notation as follows:

Continuity equation:
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Where ui = (u; v; w) the velocity components, pare is the kinematic 
pressure, and θ is the temperature, ρ  is the mass density, and g is 
the gravitational acceleration. In Eq. (2), the symbol 

ijδ  stands for 
the Krönecker delta. The chosen scales in Equations (1)-(3) are the 
side H, the velocity 

0u g H Tβ= ∆ , the time t0=H/u0 and the pressure
2
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the temperature scale is the lid-to-lid temperature difference THOT – 
TCOLD. 

As presented above, the forced-natural convection problem is 
characterized by three non-dimensional parameters:

 1) the Reynolds number 0Re
u H
ν

=  where uo is the impressed lid 
velocity;

2) The Prandtl number Pr ν
α

= , where ν is the kinematic viscosity, 
α the thermal diffusivity of the fluid; 

3) The Grashof number 
3

2

g TH
Gr

β
ν
∆

=  in which β is the coefficient 

of thermal expansion of the fluid, g the gravity and 
HOT COLDT T T∆ = −   

the temperature difference between the hot and cold horizontal 
walls. Alternatively, Gr and Re are adequately blended in the mixed-
convection parameter called the Richardson number 2Re

GrRi = .

The unsteady Navier–Stokes and energy equations are discretized 
by a second-order time stepping finite difference procedure. The 
procedure adopted here deserves a detailed explanation. First, the 
non-linear terms in Eqs. (2) are treated explicitly with a second-
order Adams–Bashforth scheme. Second, the convective terms in 
Eq. (3) are treated semi-implicitly. Third, the diffusion terms in Eqs. 
(2) and (3) are treated implicitly. In order to avoid the difficulty that 
the strong velocity-pressure coupling brings forward, we selected a 
projection method described in Peyret and Taylor [14] and Achdou 
and Guermond [15]. 

A finite-volume method is implemented to discretize the Navier–
Stokes and energy equations (Patankar [16], F. Moukhalled and M. 
Darwish [17], Kobayachi and Pereira and Pereira [18]). The advective 
terms in Eqs. (2) are discretized using a QUICK third-order scheme 
whereas a second-order central differencing (Hayase, Humphrey 
and Greif [19]) is applied in Eq. (3). The discretized momentum and 
energy equations are solved employing the red and black successive 
over relaxation method (RBSOR)  in Press et al. [20], while the Poisson 
pressure correction equation is solved utilizing a full multi-grid 
method (Hortmann et al. [21], Mesquita and de Lemos [22], Nobile 
[23]). If specific details about the computational methodology are 
needed, the reader is directed to Ben Cheikh et al. [24]. Finally, the 
convergence of the numerical 3D velocity field and the 3D temperature Figure 1: Physical system and Cartesian coordinates.
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field is established at each time step when all residuals are forced to stay 
below 10-6. To secure steady state conditions the following criterion has 
to be satisfied:

1 5
, , , ,, ,

10+ −Φ −Φ ≤∑ m m
i j k i j ki j k

Where the generic variable Φ represents the set of four variables 
(u, v, w) or θ. In the above inequality, the superscript m indicates the 
iteration number and the subscript sequence (i, j, k) represents the 
space coordinates x, y, z.

For enhanced accuracy, the present numerical model was checked 
against the published numerical solution of Tric [25]. The outcomes of 
the one-to-one comparisons are documented in Table 1 for the average 
Nusselt number predictions and maximum velocities. It is observed 
here that the present numerical computations match very closely those 
of [25].

A second comparison to those of Iwatsu [10] relatively to a 
3D mixed convection was undertaken. As shown in Table 2, good 
agreements are evident with respect to the result reported by [10].

Results and Discussion
The computed mixed convection flow and temperature fields in 

the lid-driven cubic cavity are examined in this section. The numerical 
results are presented in terms of streamlines and isotherms. The 
Reynolds number Re is varied two orders of magnitude between 100 
and 1000. In addition, the Richardson number Ri is varied four orders 
of magnitude between 0.001 and 10. The Prandtl number is set at 
Pr=0.71. We ran computations for nine different pairs of Ri and Re; that 
is: (Ri, Re)=(10, 100), (10, 400), (10, 1000), (1, 100), (1, 400), (1, 1000), 
(0.001, 100), (0.001, 400) and (0.001, 1000). In harmony with this, the 
implications of varying Ri and Re will be adequately highlighted.

A series of trial calculation were conducted with two different 
variable grid distributions, i.e., 48×48×48 and 64×64×64. For the 
moderate case dealing with Re=400 and Ri=1.0, minor differences 
of less than 0.25% were detected between the flow and temperature 
results produced by the grid 48×48×48 and those by the grid 64×64×64. 
Consequently, to optimize the grid distribution appropriately, the 
grid 48×48×48 was deemed adequate to perform all numerical 
computations. For completeness, the two grids were built using a 
tangent hyperbolic formulation. The smallest space intervals chosen 
in the three coordinate directions are 3

min min min 2.25 10−∆ = ∆ = ∆ = ×x y z , 
and are localised near the moving and stationary walls to capture the 
growth of the flow and thermal boundary layers adjacent to them. The 
time step was set to ∆t=0.01 for all computations.

The mid-plane streamlines distributions for designated values of Re 
and Ri are displayed in Figure 2. We note that for the lowest Richardson 
number employed (Ri=0.001), the trajectory of fluid particles is very 
similar to that corresponding to the classical lid-driven cavity [26] 
(Figure 2a-2d-2g). Indeed, Figure 2a shows the flow structure in the 
cavity at Re=100 with a primary vortex occupying the main part of the 
cavity. Two small recirculation cells are also emerging at the bottom 
corners as the Reynolds number goes through Re=400 to Re=1000.

When Ri is large (Ri=10), it is noticeable in (Re=100) the presence 
of two eddies localised in the proximity of the core region. With 
increments in Re, the right cell becomes feeble and amalgamates with 
the left one to provide only one stretched vortex. Interestingly, it is 
also noticed when Re=1000, that the direction of the lid velocity causes 
the centre of the vortex to move from the left side to the right side as 
confirmed by Figure 2i.

The case (Ri=1; Re=100) is very similar to (Ri=0.001; Re=100). In 
fact a primary cell is observed in the cavity with a little difference that 
its center is slightly moved downward. It is conspicuous in Figure 2e 
the effect of increasing the Reynolds number (Re=400) on the flow 
structure. The main vortex moves down and is somewhat dragged to 
the right side of the cold wall. For Re=1000, the high lid velocity causes 
the division of the main vortex in two cells (see Figure 2h).

The qualitative features of the temperature field are demonstrated 
by plotting the perspective views of isotherms, as reflected in Figure 3. In 
fact, it is clearly discernible from the patterns of isotherms that, for the 
feeble value of Richardson number (Ri=0.001), the mechanically driven 
forced convection dominates the buoyancy-driven convection (Figure 
3a, 3d and 3g), implying that the forced convection is essentially due 
to the lid-movement. In contrast, as Ri increases to Ri=10 the buoyant 

𝑹𝑹𝑹𝑹=𝟏𝟏𝟏𝟏𝟒𝟒 𝑹𝑹𝑹𝑹= 𝟏𝟏𝟏𝟏𝟓𝟓

Tric [25] Pres.
Work

Err
%

Tric
[25]

Pres.
Work

Err
%

Grille 813 483 813 483

𝒖𝒖𝒎𝒎𝑹𝑹𝒎𝒎 16.719 16.634 -0.51 43.90 44.06 0.36

𝒗𝒗𝒎𝒎𝑹𝑹𝒎𝒎 2.156 2.136 -0.93 9.69 9.55 -0.15

𝒘𝒘𝒎𝑹𝑹𝒎𝒎 18.983 18.942 -0.22 71.06 70.85 -0.30

𝑵𝑵𝒖𝒖𝒎𝒎𝒎𝒎 2.250 2.247 -0.13 4.612 4.605 -0.15

𝑵𝑵𝒖𝒖𝟑𝟑𝟑𝟑 2.054 2.054 0 4.337 4.332 -0.12

Table 1: Comparison of the computed average Nusselt number predictions and 
maximum velocities.

 

Figure 2: Trajectory particles at the x-z mid-plane for different combinations 
of Re and Ri.

Table 2: Comparison of our results with [10].

Re Ri=0.001 Ri=1.0 Ri=10.0

Ref [10] Pres. Work Ref [10] Pres. Work Ref [10] Pres. Work
100 1.82 1.836 1.33 1.348 1.08 1.092
400 3.99 3.964 1.50 1.528 1.17 1.130
1000 7.03 7.284 1.80 1.856 1.37 1.143
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convection distorts the isotherm fields and three-dimensional patterns 
become more pronounced when Re increases (Figure 3c, 3f and 3i). 
The distortion of the isotherm field increases with Richardson number. 
In other words, the flow is principally dominated by buoyancy and the 
heat transfer is controlled mainly by natural convection, signifying that 
the forced convection due to the lid-movement is almost absent.

For Ri=1, a compromise between the two phenomena, evoked 
previously,  is clearly seen in Figures 2b, 2e, 2h, 3b, 3e and 3h. 

In order to assess the average heat transfer distribution along the 
vertical walls, the Nusselt number is introduced and is defined by:

1 1

0  10 0

θ

= =

∂
= −

∂∫∫
x or x

Nu dydz
x

.

Table 3 lists the average Nusselt number Nu at the cold and hot 
walls for the computations obtained for the nine combinations (Re,Ri) 
studied. The results convincingly indicate that when Re is small 
(Re=100), the heat transfer through the cold and the hot walls exhibit 

similar trends for each value of Ri. For this same Reynolds number, 
the average Nusselt number increases with the Richardson number. By 
increasing the Reynolds number, values of Nusselt number increase 
and small differences between Nuhot and Nucold are observed. When Ri 
is small at high values of Re, the difference between Nuhot  and  Nucold  
augment. 

Relatively to the heat transfer through the cold wall, a correlation 
between Nu and Ri was established. In fact, several computations (for 
each Reynolds number) demonstrate clearly the existence of a relation 
expressed as:. α= × +Nu a Ri b . Table 4 lists the values of coefficients, b 
and α.

Conclusions
The current investigation addressed three-dimensional laminar 

mixed convection in a lid-driven cubic cavity filled with air (Pr=0.71) 
for suitable combinations of three different Reynolds numbers and 
three different Richardson numbers. The effects of varying both 
Reynolds and Richardson numbers on the resulting convection are 
investigated. Interesting behaviours of the flow and thermal fields with 
varying Reynolds and Richardson numbers are observed.

When small Ri is united with low Re, a primary vortex is observed 
occupying the main part of the cavity and its intensity is slightly modified 
when Re increased.  In addition, two minor secondary recirculating 
vortices are observed at the bottom corners as the Reynolds number 
goes through Re=400 to Re=1000. Furthermore, three dimensionalities 
of the isotherm patterns are manifested. In this case, the mechanically 
driven forced convection dominates the buoyancy-driven, implying 
that forced convection is essential due to the lid-movement.

When large Ri is paired with low Re, two primary vortex are 
observed in the proximity of the core region and their intensity is 
considerably modified to provide only one stretched vortex when 
Re increase. It is also seen that the buoyancy-driven dominates the 
mechanically driven forced convection.

The heat transfer characteristics inside the cubic cavity are 
improved significantly for low values of Ri due to the dominant effect 
of the mechanical effect provoked by the moving lid. The effects of 
both Re and Ri are also apparent in the values of the average Nusselt 
number. For high Ri united with large Re, the overall heat transfer 
and the convection mode dominates the picture. Finally for Reynolds 
number ranging from 100 to 1000, a correlation between the averaged 
heat transfer (Nu) and Ri has been reported.
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