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Extracellular Polysaccharide I (EPS I) 
One of the most important virulence factors is a heterogeneous 

polymer of N-acetylated extracellular polysaccharide I (EPS I) [8]. 
EPS I-deficient mutants are nearly avirulent and do not colonize plant 
xylem vessels as efficient as wild type [4,9]. It has been suggested that 
EPS I directly causes wilting by physically blocking the vascular system 
and thereby alters water movement [8]. It has also been hypothesized 
that EPS protects R. solanacearum from plant antimicrobial defenses 
by cloaking bacterial surface features that could be recognized by hosts 
[4,9]. Interestingly, it has been recently found that R. solanacearum 
EPS I plays different roles in resistant and susceptible hosts [10]. In 
susceptible tomato plants, the wild-type and EPS I-deficient mutant 
induced generally similar defense responses; but in resistant tomato 
plants, the wild-type induced significantly greater defense responses 
than the EPS I-deficient mutants, suggesting that the EPS I itself is a 
specific elicitor of plant defense responses [10].

The Type III Secretion System 

Motility 
R. solanacearum possesses flagella-driven swimming motility and

type IV pili-driven twitching motility that are important to its ecological 
fitness and virulence [22-25]. Both nonmotile and nontactic mutants 
are significantly reduced in virulence on soil-drench inoculated tomato 
plants but exhibit normal virulence when directly inoculated into plant 
xylem, indicating that R. solanacearum needs directed motility and that 
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Abstract
The bacterium Ralstonia solanacearum causes bacterial wilt on more than 200 plant species, including important 

crops such as potato, tomato, eggplant, pepper, tobacco and banana. Many factors contribute to the virulence of 
this pathogen. This review discusses the major virulence factors, including extracellular polysaccharide I, the type 
III secretion system and effectors, swimming motility and twitching motility, cell-wall-degrading enzymes and type II 
secretion system, and their contribution to the virulence and pathogenicity of Ralstonia solanacearum.
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Ralstonia solanacearum, previously named Pseudomonas 
solanacearum and Burkholderia solanacearum, is a soil-borne gram-
negative bacterium that causes bacterial wilt disease on more than 200 
plant species from 50 botanical families, including important crops 
such as potato, tomato, eggplant, pepper, tobacco and banana [1,2]. R. 
solanacearum is considered a species complex-a heterogeneous group 
of related but genetically distinct strains [3]. This bacterium infects 
plants through root wounds or at sites of secondary root emergence, 
then colonizes the xylem vessels and spreads rapidly to aerial parts of 
the plant through the vascular system. In xylem vessels, the bacterial 
population can multiply extensively and rapidly reach very high levels 
(>1010 cells/cm of stem in tomato) [4,5]. Typical disease symptoms 
include browning of the xylem, chlorosis, stunting, wilting, and the 
infected plants usually die rapidly. Bacterial wilt is considered one of 
the most destructive bacterial plant diseases because of its extreme 
aggressiveness, world-wide geographic distribution, and unusually 
broad host range [6]. In fact, R. solanacearum was ranked 2nd in a list of 
the top 10 most scientifically/economically important plant pathogenic 
bacterial pathogens in 2012 [7].

R. solanacearum has been widely accepted as a model organism
for the study of bacterial virulence and pathogenicity in plants [1]. To 
date, many factors have been found to contribute to the virulence of R. 
solanacearum, however, due to the limited space, this paper will only 
discuss the major virulence factors in this pathogen.

The Type III Secretion System (T3SS) has a central role in 
pathogenesis of many bacterial pathogens of plants and animals [11]. 
In R. solanacearum, the T3SS is encoded by the hrp gene cluster, 
which spans a 23-kb region on the mega plasmid [12]. As in other 
major groups of Gram-negative bacteria, R. solanacearum hrp genes 
are key determinants for disease development on compatible hosts 
and for induction of the defensive hypersensitive response (HR) on 
resistant plants [13]. R. solanacearum is estimated to produce 70–80 
type III effectors [14]. The completely nonpathogenic phenotype of 
R. solanacearum T3SS-defective mutants illustrates the collective
importance of the effector proteins that are injected into plant cells by
the system, although mutants lacking single effectors are usually fully
virulent [11,15]. The T3SS of R. solanacearum contributes greatly to
pathogenesis, but hrp mutants retain the ability to invade tomato roots
and systemically colonize the vascular system, although the population
size of T3SS mutants in infected tissues was reduced by 10 to 1000 fold
compared to wild-type strains [16,17]. Recently, in planta transcriptome
study and qRT-PCR tests by Jacobs et al. [18] and in planta expression
study using green fluorescent protein reporter fusions by Monterio et
al. [19] found that the T3SS is still active even after R. solanacearum has
taken over the xylem, suggesting that the T3SS is functional throughout
disease. These results changed the wide spread view from in vitro studies
that T3SS is only active at the first stage of infection and is not needed
when bacteria reach high cell densities [20,21].
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swimming motility contributes to virulence in the early stage of host 
colonization and invasion [22,23]. However, when R. solanacearum 
grows in plant xylem, virtually all the bacterial cells are nonmotile 
[22,23]. Interestingly, recently it is reported that a hypermotile motN 
mutant of R. solanacearum is also reduced in virulence [26], indicating 
the importance of precise regulation of motility in this bacterium. R. 
solanacearum strains with mutations in pilQ, pilT or pliA lost twitching 

soil-drench and cut-petiole inoculation [24,25]. Furthermore, the pilA 
mutant was also affected in biofilm formation, adherence to multiple 
surfaces and natural transformation [24]. Together, these results 
demonstrate that type IV pili and twitching motility are important for 
several stages of wilt disease development.

Cell-Wall-Degrading Enzymes (CWDEs) and Type II 
Secretion System (T2SS) 

R. solanacearum secretes several CWDEs, including three 
polygalacturonases (PehA , PehB and PehC) [27,28], an endoglucanase 
(Egl) [29], a pectin methylesterase (Pme) [30], and a cellobiohydrolase 
(CbhA) [31]. Gene disruption analysis revealed that Egl, PehA, PehB 
and CbhA, each contribute to the pathogen's ability to cause wilt [31-
33]. An R. solanacearum strain GMI1000 pyramid mutant lacking all 
known CWDE genes, although significantly less virulent than parent 
strain GMI1000, was more virulent than a T2SS mutant. This suggests 
that additional extracellular proteins secreted by the T2SS contribute to 
the virulence of R. solanacearum [31].

Other Virulence Factors 

, 

The virulence factors of R. solanacearum are controlled by a 
complex regulatory signal transduction pathway that responds 
to both environmental signals and quorum sensing molecule 
3-hydroxypalmitic acid methyl ester (3-OH PAME) [20,42]. For details, 
the readers are referred to a very comprehensive review on regulation 
of virulence and pathogenicity genes written by Schell [43]. Over the 
years, substantial progress has been made in studying R. solanacearum 
and bacterial wilt disease [43]. With genomes of more than 10 strains 
from R. solanacearum species complex being available now [44-
50], our knowledge about this pathogen will be broadened further. 
Based on comparative genomic analysis of eight sequenced strains, it 
has been proposed that the R. solanacearum core genome comprises 
~2,850 conserved genes, whereas the variable genome contains ~3,100 
genes and the numbers of strain-specific genes vary from strain to 
strain [46,47]. This great genetic variation may account for the broad 
host range of R. solanacearum species complex and makes it more 
challenging to determine which genes are responsible for host-range 

speciation. A better understanding of the R. solanacearum virulence 
factors and their complex regulation will lead to novel avenues for 
research and effective disease control strategies.
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