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Introduction
One of the key features of asthma is airways hyperresponsiveness 

(AHR), so this phenotype is a prerequisite in animal models to be used 
for preclinical asthma research. However, AHR can arise through a 
variety of different mechanisms, so its mere presence does not guarantee 
relevance to human asthma. For example, we have shown that AHR 
in allergic mice is almost entirely reflective of increased closure of 
small airways in the lung periphery cause by an inflamed and mucus 
laden epithelium [1-3]. By contrast, we have also shown that direct 
application of cationic protein to the airways produces AHR as a result 
of increased smooth muscle contraction, likely due to loss of integrity 
of the epithelial barrier that normally acts to protect the underlying 
smooth muscle from agents entering the airway lumen [4,5]. The extent 
to which either of the above mechanisms of AHR mimics the situation 
in human asthma remains an open question; indeed, it is possible that 
both are operative to some degree. 

What is more troubling, however, about current mouse models of 
asthma from the perspective of relevance to the human disease is the 
acuteness with which AHR is induced. Human asthma is typically a 
chronic condition that often has a history extending decades back in 
time, and for which the instigating factor is invariably obscure. This 
contrasts rather starkly with the production of AHR in a mouse, which 
is typically manifest via sensitization to and challenge with a foreign 
antigen in combination with an adjuvant over a few days or weeks 
[6]. Furthermore, the AHR phenotype in allergically inflamed mice is 
transient, waxing and waning over the course of a month or so due to 
the phenomenon of immune tolerization even in the face of continual 
antigenic challenge [7-10]. These inconvenient facts are often ignored 
by asthma researchers. 

On the other hand, although human asthma is a chronic condition, 

its inflammatory and symptomatic manifestations generally fluctuate 
with time due to factors such as variation in seasonal allergens as well 
as unexplained periods of remission [11]. This led us to suspect that 
the transient asthma-like phenotype in allergically inflamed mice may 
be more appropriately viewed as recapitulating an asthma fluctuation 
rather than as being a model of the entire disease. Such a perspective 
points to the importance of understanding the temporary dynamics of 
the allergic AHR phenotype, rather than simply focusing on its most 
pronounced manifestation at a single point in time. Accordingly, we set 
out in the present study to examine how the AHR phenotype evolves 
over time in an ovalbumin sensitized and challenged mouse model of 
allergic lung disease.

Methods
Animals

Female BALB/cJ mice were purchased from Jackson Laboratories 
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Abstract
Airways hyperresponsiveness (AHR) is usually produced within days of first antigen exposure in mouse models 

of asthma. Furthermore, continual antigen challenge eventually results in the resolution of the AHR phenotype. 
Human asthma also waxes and wanes with time, suggesting that studying the time course of AHR in the allergic 
mouse would offer insights into the variation in symptoms seen in asthmatics.

Mice were sensitized with ovalbumin (OVA) on days 0 and 14. As assessed by airway resistance (Rn), lung 
elastance (H) and tissue damping (G), AHR was measured post an OVA inhalation on day 21 (Short Challenge 
group), after three days of OVA inhalation on day 25 (Standard Challenge group) and following an OVA inhalation 
on day 55 in mice previously challenged on days 21-23 (Recall Challenge group). Bronchoalveolar lavage was 
analyzed for inflammatory cells, cytokines and protein.

AHR in the Short Challenge group was characterized by an increase in Rn and neutrophil accumulation in the 
lavage. AHR in the Standard Challenge group was characterized by increases in H and G but by only a modest 
response in Rn, while inflammation was eosinophilic. In the Standard Challenge protocol, mice lacking fibrinogen 
were no different from control in their AHR response. AHR in the Recall Challenge group was characterized by 
increases only in G and H and elevated numbers of both neutrophils and eosinophils. Lavage cytokines were only 
elevated in the Recall Challenge group. Lavage protein was significantly elevated in all groups.

The phenotype in allergically inflamed mice evolves distinctly over time, both in terms of the nature of the 
inflammation and the location of the AHR response. The study of mouse models of AHR might be better served by 
focusing on this variation rather than simply on a single time point at which AHR is maximal.
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(Bar Harbor, ME). Fibrinogen knock-out mice, littermate heterozygotes 
and homozygotes (Fgn-/-, Fgn+/- and Fgn+/+) on a C57BL/6J background 
were bred in house. The mice were housed in an AAALAC and USDA 
accredited animal facility at the University of Vermont fully equipped 
for laboratory animal care. The study was approved by the Institutional 
Animal Care and Use Committee at the University of Vermont.

Assessment of airway hyperresponsiveness (AHR)

The mice were anaesthetized with i.p. sodium pentobarbital 
(90mg/kg), the trachea cannulated and connected to a flexiVent™ 
computer controlled small animal ventilator (SCIREQ, QC, Canada), 
as previously described [12,13,1], and ventilated at 200 breaths/minute. 
Next the mice were paralyzed with pancuronium bromide i.p. (0.8µg/
kg). The animals were stabilized over about ten minutes of regular 
ventilation at a positive end-expiratory pressure (PEEP) of 3cm H2O. 
A standard lung volume history was then established by delivering 
two total lung capacity maneuvers (TLC) to a pressure limit of 25cm 
H2O and holding for three seconds. Next, two baseline measurements 
of respiratory input impedance (Zrs) were obtained. This was followed 
by an inhalation of aerosolized PBS (control) for 10 s, achieved by an 
in-line piezo electric nebulizer (Aeroneb, Aerogen, Galway, Ireland). 
Zrs was then measured every 10 s for 3 min (18 measurements of Zrs 
in total). This complete sequence of maneuvers and measurements 
was then repeated for aerosol exposures to three incremental doses of 
methacholine (3.125, 12.5 and 25 mg/ml). Airways responsiveness was 
quantified in terms of the average of the 18 measurements obtained at 
the highest methacholine dose.

Lung mechanics

Zrs over the frequency range 1-20.5 Hz was determined using a two 
second broadband perturbation in volume applied by the flexiVent. 
Each determination of Zrs was fit with the constant phase model of 
impedance [14] given by

( ) 2
(2 )rs n
G iHZ f R i fI

f απ
π
−

= + + 			                (Eq.1)

where Rn is a frequency independent Newtonian resistance reflecting 
that of the conducting airways, I is airway gas inertance, G characterizes 
tissue resistance, H characterizes tissue stiffness, i is the imaginary unit, 
and f is frequency in Hz [15,14].

Broncho alveolar lavage analysis

At the end of the AHR protocol the mice were euthanized with 
a lethal dose of sodium pentobarbital (150mg/kg, i.p.) and the lungs 
were lavaged with 1 ml of phosphate buffered saline. Total cell counts 
were obtained, and the lavage was centrifuged and the supernatant 
used for analysis of cytokines (Bio-Plex®). The cell pellet was then 
re-suspended and cytospin slides prepared for cell differentials using 
Hematoxylin - Eosin stain. As it has previously been shown that plasma 
extravasation can be an important part of the response to inflammatory 
stimuli such as an antigen challenge [16], we also analyzed the BALF for 
protein content using standard Bradford analysis. Protein content was 
calculated using a colorimetric assay (Bio-Rad Laboratories, Hercules, 
CA), standardized to graded concentrations of bovine serum albumin 
(BSA).

Statistics

Statistical testing was performed by one-way ANOVA with 
Bonferroni post-hoc test. A p<0.05 was accepted as a statistically 
significant difference.

Experimental design

Female BALB/cJ mice, 6 - 8 weeks of age, were sensitized and 
challenged with chicken ovalbumin (OVA). Briefly, on days 0 and 14, 
animals were injected (100µl, intraperitoneal - i.p.) with OVA (20µg) 
emulsified in 2.25mg of aluminum hydroxide/magnesium hydroxide. 
Control animals had the i.p. injections with OVA + alum but received 
phosphate buffered saline (PBS) inhalations. Airways responsiveness 
was determined after subjecting these mice, in separate groups, to 3 
different OVA inhalation challenge protocols, as follows (Figure 1): 

Short challenge: Mice were exposed to a dilute (1%) OVA aerosol 
for 30 minutes 1 week after the second i.p. injection and then studied 16 
hours later (n = 6 – 8 per group).

Standard challenge: Mice were exposed to a dilute (1%) OVA 
aerosol for 30 minutes on each of 3 consecutive days beginning each 1 
week after the second i.p. injection and then studied 48 hours later (n 
= 6 – 8 per group).

Recall challenge: Mice were exposed to a dilute (1%) OVA aerosol 
for 30 minutes on each of 3 consecutive days beginning each 1 week 
after the second i.p. injection. They were given an additional 30 minute 
aerosol challenge 32 days later and studied 16 after that (n = 8 per 
group).

Results
Airways responsiveness in the Short Challenge group was 

characterized by an increase in Rn (Figure 2), which we interpret 
as reflecting contraction of the smooth muscle surrounding the 
conducting airways. Inflammation was dominated mostly by 
neutrophil accumulation in the BALF (Figure 3) and by IL-4 and IL-5 
in the cytokine profile (Figure 4). Despite the presence of neutrophils, 
no IL-17 was detected in the BALF, in agreement with our previous 
observation that OVA+ alum sensitization does not elicit a Th17 
response [17].

In contrast, responsiveness in the Standard Challenge group was 
characterized by increases in H and G, while Rn was only modestly 
elevated relative to control (Figure 2). At this time point, inflammation 
was dominated by an accumulation of eosinophils (Figure 3) with no 
cytokine being significantly elevated above its control level (Figure 4).

Finally, responsiveness in the Recall Challenge group was 

OVA+
alum
i.p.

OVA+
alum
i.p.

1% OVA
inhalation

1% OVA
inhalation

Day:   1                14            21     22      23   25                 55

AHR,
Standard
Challenge

AHR,
Recall
Challenge

AHR,
Short
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Figure 1: Outline of the experiments
BALB/cJ mice were sensitized with i.p. injections of alum and OVA and then 
challenged by inhalation of 1% OVA for 30 minutes as indicated. Mice were har-
vested at three different time points; 16 hrs post the first OVA challenge (Short 
Challenge), 48 hrs post three repeated OVA challenges (Standard Challenge) 
and 16 hrs after a single recall OVA challenge at day 55 in mice that had also 
been OVA challenged on days 21-23 (Recall Challenge). Control mice received 
i.p. OVA+alum but only PBS inhalations. At each harvest respiratory mechanics 
were assessed and BALF collected.
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Figure 2: Airways hyperresponsiveness to inhaled methacholine
BALB/cJ mice were sensitized and challenged with OVA. AHR was assessed 16hrs after the first OVA inhalation (green bars, Short Challenge), 48 hrs after 
3 daily exposures to OVA (blue bars, Standard Challenge) or 16 hrs after a single inhalation of OVA one month after the original challenge (red bars, Recall 
Challenge). Control mice received i.p. sensitizations but control PBS inhalations (white bars). Following a single exposure to inhaled OVA, methacholine 
produced a response dominated by an increase in Rn. In contrast, after 3 exposures to OVA the methacholine response was dominated by H and G. After a 
single recall challenge, the response to methacholine was entirely dominated by increases in G and H. **p<0.01, ****p<0.0001.
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Figure 3: Cell counts and differentials from bronchoalveolar lavage
Neutrophils dominated the BALF after a single OVA challenge (green bars, Short Challenge). Eosinophils dominated the BALF after 3 exposures to OVA (blue bars, 
Standard Challenge). After a recall challenge, the BALF had a mix of neutrophils and eosinophils (red bars, Recall Challenge). Neither challenge protocol generated 
significant levels of lymphocytes. **p<0.01, ***p<0.001, ****p<0.0001.
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characterized entirely by large increases in G and H relative to 
control (Figure 2), while the inflammatory picture contained a mix of 
neutrophils and eosinophils (Figure 3) and elevations inIL-4, IL-5, IL-
10, IL-13 and eotaxin, with no detectable IL-17 (Figure 4).

Total protein content in the BALF increased significantly and 
progressively with the duration of the challenge protocols (Figure 5). 
We conducted a limited investigation using the Standard Challenge 
protocol to determine if lack of fibrinogen would modulate the AHR. 
Figure 6 shows that wild type control C57BL/6J mice have a significantly 
increased response to aerosolized methacholine relative to control 
mice, but that Fgn-/- mice are no different from control Fgn+/+ in their 
response. Fgn+/- mice had an intermediate level of AHR.

Discussion
The inflammatory process in allergically inflamed mice is set up by 

the antigen sensitization procedure, and gets under way with the first 
OVA inhalation challenge. It is clear from the present study that this 
first challenge sets in motion a sequence of events that evolve rapidly 
over time. Indeed, after only 16 hrs the animals exhibited increased 
narrowing of the conducting airways to methacholine (Figure 2) and a 
substantial neutrophilia (Figure 3). A mere 4 days later, this transformed 
into a methacholine response localized to the lung periphery (Figure 2) 
and an eosinophilic inflammatory profile (Figure 3). These alterations 
were accompanied by changes in the inflammatory cytokine profile of 
the BALF (Figure 4) and progressively increasing BALF protein (Figure 
5). However, this evolving picture does not continue indefinitely. We 
and others have previously observed that more protracted antigen 
challenges eventually result in tolerization illustrated by a return in 

the AHR phenotype and airway eosinophilia toward baseline despite 
continued presence of structural inflammatory changes [7,8]. On the 
other hand, we found in the present study that if animals are given an 
extended (30 day) rest from exposure to antigen then they will respond 
to a subsequent challenge with even more vigor than before (Figure 
2-5). 

A key question that arises is how the above observations relate 
to asthma. Specifically, do the changes in phenotype we observed in 
the present study correspond in any way to events taking place in the 
course of the human disease? We suspect that they may, given the 
growing realization that there is more than a single asthma phenotype 
in humans. Classically, the eosinophil has been implicated as the 
predominant inflammatory granulocyte driving the pathophysiology 
of allergic asthma [18,19]. However, the pathogenic role of neutrophils 
in asthma is now more widely appreciated [20,21]; studies of induced 
sputum from asthmatics suggest that up to 60% of patients have non-
eosinophilic airways inflammation [22], and a direct correlation has 
been demonstrated between sputum neutrophilia and severity of 
airflow limitation [23,24]. Furthermore, neutrophilic inflammation has 
been strongly implicated in asthma exacerbation [25], severe asthma 
[26-28], corticosteroid-resistant asthma [29,30], and fatal asthma [31]. 
Indeed, it has been suggested that mice with AHR accompanied by 
airway neutrophilia model a distinct phenotype of asthma [25,32,33] 
that mimics severe human asthma better than mice with eosinophilic 
inflammation [21]. We have shown, for example, that early following 
a single allergen challenge in OVA + alum sensitized mice the airway 
epithelium inducibly expresses the neutrophilic chemokine MIP-2 and 
neutrophil accumulation in the BALF is substantial, whereas eotaxin 
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Figure 4: Cytokine titers in bronchoalveolar lavage
IL-4, IL-5, IL-10, IL-13 and eotaxin were significantly increased after the recall challenge with OVA (red bars, Recall Challenge). IL-5 and Eotaxin were increased 
after a single OVA challenge (green bars, Short Challenge) whereas eotaxin was the only cytokine increased in the Standard Challenge group (blue bars). *p<0.05, 
***p<0.001, ****p<0.0001.
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expression occurs later and precedes the accumulation of eosinophils 
and airway hyperresponsiveness to methacholine [34]. Furthermore, 
eliminating neutrophils using a GR1 antibody in an acid-induced 
AHR murine model eliminated AHR [35], suggesting that neutrophils 
primarily affect the periphery of the lung. The mice in the Recall 
Challenge group of the present study also demonstrate that robust AHR 
can be achieved in the presence of high numbers of neutrophils with 
few eosinophils. On the other hand, a complete lack of eosinophils 
prevents AHR in OVA allergic mice [36]. These various results support 
the view that rather than thinking of one particular cell type as being 
critical to the generation of AHR, we should rather think of AHR as 
part of a dynamically evolving phenotype that requires a number of 
different cell types to be present at various stages throughout its course.

Our conclusions about the nature of the AHR phenotype in this 
study are predicated on our ability to infer mechanism from the 
relative changes in the impedance parameters Rn, G and H following 
methacholine challenge. This is based on a substantial amount of prior 
work from our laboratory showing that Rn is a good reflection of the flow 
resistance of the airway tree [37] and that increases in G and H in the 
same proportion reflect closure of small airways [1,3]. Our inferences 
are also supported by in silico experimentation with anatomically-based 
computational models of the mouse lung on the changes in Zrs caused by 
bronchoconstriction [4,3,38]. Nevertheless, these conclusions remain 
largely inferential, so it is important to ask how well they hold up to 
actual findings, as in the present study. Relevant to this question is the 
finding that BALF protein content increased (Figure 5) commensurately 
with measures of airway closure (H and G in Figure 2). Increased BALF 
protein is to be expected since it has been shown that OVA challenge in 
allergic animals generates significant vascular leakage into the airway 
lumen [39,40], something that is inhibited by common asthma drugs 
such as formoterol and glucocorticoids [16,39,40]. In any case, the 
accumulation of vascular fluid and protein in the airspaces of the lung 
would be expected to affect surfactant function and so predispose to the 
closure of small airways, explaining why extensive lung derecruitment 
seems to accompany experimental AHR in mice [1,3].

We thus decided to take this issue further by investigating whether 
the airway closure of AHR is due to any particular plasma protein 
that exudes into the airspace. While plasma extravasation and fibrin 
accumulation in the airway lining fluid is a well-known culprit of 
increased surface tension and lung derecruitment in Acute Lung Injury 
[41], there is also evidence that fibrinogen and fibrin contribute to small 
airway closure in a BALB/cJ mouse model of asthma using the same 
Standard Challenge protocol as in this study [42]. In a recent human 
case study it was found that levels of sputum D-dimer, a common 
fibrin breakdown product, was elevated in severe asthmatics over that 
of moderate asthmatics, indicative of fibrin formation and turnover 
in asthmatic airways [26]. We therefore investigated whether a lack 
of fibrin offers protection against the rises in G and H that dominates 
AHR by repeating the Standard Challenge protocol in mice (C57BL/6 
background) lacking the ability to produce circulating fibrinogen (Fgn-

/-). Figure 6 shows that wild type control Fgn+/+ mice have a significantly 
increased response to aerosolized methacholine relative to control mice, 
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Figure 6: AHR in fibrinogen knock-out mice
Fibrinogen knock-out mice (Fgn-/-) and heterozygotes (Fgn+/-) on C57BL/6J background were sensitized with two i.p. injections with OVA + alum on days 1 and 14 and 
then exposed to 3 daily inhalations of nebulized 1% OVA. Non-sensitized and sensitized littermates (Fgn+/+) were used as wild type controls. AHR was assessed 48 
hrs after the last exposure to OVA. The control mice had a significantly elevated response to inhaled methacholine affecting all three parameters of respiratory me-
chanics (Rn, H and G). In contrast, Fgn-/- did not show a response different from wild type control mice. Fgn+/- had an intermediary response. n = 11, *p<0.05, **p<0.01, 
****p<0.0001.
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(red bar, Recall Challenge). *p<0.05, ***p<0.001, ****p<0.0001.
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but that Fgn-/- mice are no different from non-sensitized control in their 
response. Furthermore, Fgn+/- mice, which have a plasmafibrinogen level 
of about 70% that of the wild type mice [43], had an intermediate level 
of airways responsiveness, falling between that of the wild type and Fgn-

/- mice, suggesting a dosing effect of fibrinogen on AHR. In addition, 
the BALF from the Fgn-/- and Fgn+/-mice was dominated by eosinophils 
(70.9 ± 13.0 % and 64.2 ± 31.2 %, respectively). These results would seem 
to suggest that fibrin plays a key role in the exacerbated airway closure 
caused by methacholine challenge in allergically inflamed mice and 
correlate with our previous findings in BALB/cJ mice [42]. However, 
the findings are not quite so clear cut because we also assayed the BALF 
for fibrinogen in the main study mice but did not find any differences 
between inflamed and control mice (data not shown). Furthermore, in 
a previous study of acid-induced Acute Lung Injury in which the BALF 
was conspicuous for high levels of fibrinogen, we found that fibrinogen 
knockout mice were not protected against lung derecruitment [41]. 
Hence, any ameliorating effects of fibrin or fibrinogen removal might 
simply reflect a reduction in the general protein burden in the airspaces, 
leading to a reduced effect on surfactant function, preservation of 
reduced surface tension, and less distal airway closure.

In conclusion we have shown that allergically induced AHR in 
mice varies in both nature and severity over time, accompanied by 
concomitant variations in cellular inflammation and cytokine profile. 
This reinforces the notion that AHR is an evolving phenotype, and that 
the study of mouse models of AHR might be better served by focusing 
on this variation rather than simply on a single time point at which 
AHR is maximal. This might make such mouse models more relevant 
to human asthma. Indeed our novel finding showing that a recall 
challenge generates a unique phenotype might be more comparable to 
clinical asthma with established immunological memory, presence of 
neutrophils and peripheral airway closure.
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