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The Na+, K+-ATPase (NKA), i.e. sodium pump, is a plasma 
membrane-embedded protein that maintains the asymmetric 
distribution of sodium and potassium. In neurons, because of the 
frequent perturbation of ion homeostasis due to constant synaptic and 
neuronal activity, the workload of NKA is so high that it consumes 
half of the ATP produced in the brain [1]. For every ATP hydrolyzed, 
Three Na+ from the cytosolic side and two K+ from the extracellular 
medium are exchanged, making the NKA electrogenic, and helping 
the formation of negative resting potential [2]. The sodium gradient, 
not only forms the basis of excitation, but is also harnessed by many 
secondary transport systems, including glutamate transporters and the 
Na+-Ca+ exchanger. NKA is a heterodimer composed of two subunits, 
α and β, in which α is the catalytic subunit, containing ATPase activity 
and β is a regulatory subunit, required for the enzymatic activity of 
NKA [3,4]. The recently discovered γ subunit, associates with the NKA 
complex but its function remain elusive. 

So far, 4α and 3β subunits have been cloned in mammals. The 
different subunit composition and cellular/subcellular distribution 
of NKA, may confer cell type specific properties. α1 is ubiquitously 
distributed and α4 seems to be only expressed in testis. α1-3 are all 
abundantly expressed in the brain [2]. At the single neuron level, 
immunostainings have shown widespread localization of NKA in the 
soma as well the dendrites, but its subcellular distribution has not been 
carefully examined [5,6]. By double staining with the synaptic marker 
PSD-95, we find an enrichment of the NKA α1 subunit, at synaptic 
sites in cultured cortical neurons [7]. In addition, consistent with other 
reports [5], our biochemical analysis using membrane fractionation, 
also confirmed the existence of NKA in purified synaptosomes from 
brain tissue, indicating the synaptic localization of NKA, in both 
cultured neurons and native brain. Although NKA biology has been 
extensively studied in peripheral tissues such as cardiac and renal 
epithelial cells, few studies have been done on its role in neurons.

In the brain, neuronal communication is achieved mainly via 
glutamate-mediated synaptic transmission. There are two major types 
of ionotropic glutamate receptors - AMPA receptors (AMPARs) and 
NMDA receptors (NMDARs). AMPARs mediate the vast majority 
of fast excitatory synaptic transmission, whereas NMDARs play 
vital role in the modulation of synaptic efficacy, generating synaptic 
plasticity. AMPARs are heterotetromers, assembled from different 
combinations of four subunits GluA1-4, the most common of which 
are receptors containing GluA1/GluA2 or GluAR2/GluA3. NMDARs 
are composed of GluN1 subunits, and at least one GluN2 subunit, 
out of four GluN2 subtypes GluN2A-2D. AMPAR and NMDAR co-
localize at the postsynaptic domain at a high density, an accumulation 
believed to be stabilized and regulated, by interaction with cytosolic 
scaffolding proteins. These AMPAR-associated proteins usually 
contain one or more PSD domains, through which they interact with 
the intracellular C-terminus of GluAs, to regulate AMPAR synaptic 
targetting, intracellular trafficking as well as channel function [8,9]. 
AMPARs are primarily sodium channels. In comparison, NMDARs 
permit both sodium and calcium, with the latter playing an important 
role in synaptic plasticity, as calcium triggers a variety of downstream 
signaling events. However, at resting conditions, NMDARs are blocked 
by extracellular magnesium trapped in the channel pore, which can 

only be relieved by membrane depolarization. During action potential-
triggered glutamate release, sodium influx via AMPARs depolarizes the 
plasma membrane, leading to the release of Mg2+ from the channel pore 
and thus, activation of the NMDARs. 

Given the dense synaptic expression of sodium-permeant 
glutamate receptors, whose persistent activity is directly coupled to 
the function of NKA; it is reasonable to assume the existence of cross-
talk between the sodium-permeating channels and NKA for functional 
coordination. Indeed, we find that NKA is physically associated with 
AMPARs. Inhibition of NKA by Ouabain, induces a rapid translocation 
of AMPARs from the plasma membrane to the cytosolic domain, where 
they are digested via proteasome-mediated degradation, presumably, as 
a result of receptor ubiquitination [10,11], causing a lasting suppression 
of synaptic transmission [7]. This suggests a homeostatic regulation of 
AMPARs by NKA, i.e. the intracellular sodium accumulation caused 
by NKA inactivity, leads to a removal of sodium-permeating channels 
at the cell-surface. It may explain the observation that in contrast to its 
toxicity, low doses of ouabain actually offer protection against neuronal 
death [12]. Because NKA starts losing function, at the early phase of 
stroke/ischemia due to the lack of ATP supply, the resulting rapid 
removal of surface AMPARs may help to alleviate the excitotoxicity. 
In support of this notion, ouabain has recently been suggested in the 
treatment of stroke-induced neuronal death [13]. 

Although NKA has been traditionally considered a pure energy 
transducing ion pump, evidence from recent years reveals that it is also 
involved in the regulation of many cellular functions including gene 
expression, cell growth, and cell motility. Protein-protein interactions 
are a major means of bridging NKA activity to signaling molecules or 
organelles [14-17]. For instance, the tyrosine kinase Src, which regulates 
a large number of cellular functions, including glutamatergic NMDA 
receptor channel property and synaptic plasticity [18,19], associates 
with NKA via direct protein interaction. Interestingly, ouabain 
increases Src binding to NKA and elevates Src tyrosine kinase activity 
[20,21]. In a similar manner, the p85 subunit of phosphoinositide-3 
kinase (PI3K) binds to the catalytic subunit of NKA through its SH3 
domain, leading to the activation of PI3K and endocytosis of NKA in 
renal epithelial cells [22]. NKAs are functionally linked to intracellular 
calcium stores, through interaction with the inositol 1,4,5-triphosphate 
receptor (IP3R). This association activates IP3R, causing slow calcium 
oscillations and the activation of the transcription factor NF-ĸB [23]. 
In addition, NKA is also involved in the cell adhesion process by two 
means: the β2 subunit itself functions as an adhesion molecule in the 
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brain, capable of promoting neurite growth in vitro [24]. Also, when 
bound with ouabain, NKA increases the expression of the cell adhesion 
molecule Connexin 32 and facilitates its cell surface expression [25,26]. 
All these indicate that, in addition to being an active ion transporter, 
NKA also functions as a transducer of signals from the extracellular 
milieu to the interior of the cell. 

Ouabain as a specific, high affinity inhibitor of NKA has been used 
for the treatment of heart problems and in research for many years. The 
long-standing question is, whether there exists endogenous ouabain or 
other types of ligand molecules. Investigations have confirmed that, the 
same ouabain can be synthesized and released by the peripheral organ 
adrenal cortex and in the brain, mainly by the hypothalamus. Ouabain 
is therefore, now regarded as a bonafide physiological steroid hormone 
circulating the body and the nervous system [27,28]. Peripheral 
release of endogenous ouabain can be regulated by physical exercise, 
causing a rapid rise in concentration that declines rapidly upon rest 
[29]. Furthermore, half of the population with hypertension show 
augmented concentration of endogenous ouabain, suggesting a role in 
cardiovascular regulation [30-33]. The finding that Agrin specifically 
binds to NKA in neurons, provided another type of endogenous NKA 
ligand [34]. Agrin, originally found in the neuromuscular junction 
(NMJ), is released at the nerve terminals of motor neurons, and acts 
to recruit and enrich acetylcholine receptors on the postsynaptic end 
[34,35]. Since, agrin is also synthesized and released by neurons in 
the brain [36-38], a large amount of effort has been made to confirm 
a similar role for brain agrin, in recruiting glutamate receptors in 
central synapses. Findings, however, have turned out to be negative. No 
gross defects were observed in neural agrin mutant mice, suggesting 
a different function for brain agrin [39,40]. Interestingly, a study 
demonstrated that agrin binds specifically to α3 subunits of NKA and 
inhibits neuronal NKA activity. A competition experiment confirms 
that, endogenous neuron-released agrin indeed regulates NKA 
function [36]. The physiological roles for endogenous NKA inhibitors 
in brain function remain to be investigated.
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