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Introduction
Extracellular Matrix (ECM) is the biologically active connective 

framework extending between cells; the composition of the ECM 
contributes significantly to wound healing, cell proliferation, cell 
mobility, and cell differentiation [1]. ECM occurs in two basic forms 
in animal tissues: stromal matrix and basement membrane [2]. The 
basement membrane is a thin layer of ECM located on the basolateral 
epithelium and separating epithelial tissue from connective tissue. 
Stromal matrix is associated with connective tissue and generally 
located within the arterial walls as well as in fibrous tissue, tendons and 
skin.

Interaction with the surrounding ECM is an essential component 
of cellular differentiation and morphogenesis. Although ECM is 
well known as a structural component of tissues and organs, it has 
many other functions including regulation of cell morphology, cell-
cell interaction and signaling, and cellular differentiation [3]. The 
biomechanical properties of ECM, such as rigidity and deformability, 
can directly influence cell behavior through mechano transduction 
mechanisms [1]. 

ECM consists of several distinct components (Figure 1) which can 
be divided into three groups: i) structural proteins, such as collagen and 
elastin, ii) specialized adhesion proteins, such as fibronectin, fibrilin, 
and laminin, iii) glycosaminoglycans (GAG) and proteoglycans (PG). 
ECM components are synthesized within the cell and secreted by 
exocytosis [4]. Collagen (type I, III, and V on the airway wall and type 
IV and VIII under the basement membrane) and elastin account for 
approximately 2/3 of the dry weight of ECM, while the remainder is 
made up of glycoproteins (fibronectin, tenascin, laminin) and other 
matrix components (heparin sulfate, hyaluronan). 

ECM proteins modulate signal transduction events through 
interactions with a class of adhesion receptors known as integrins [5]. 
ECM proteins and other components play an important role in cellular 
differentiation, proliferation, polarization and migration [6]. Growth 
factors, including VEGF, IGF, FGF, TGF-β embedded in the ECM 
regulate cellular distribution, proliferation, and differentiation though 
interactions with cell surface integrins [7]. The role of ECM proteins 
in pulmonary disease, particularly pulmonary arterial hypertension 
(PAH), has been an area of increasing research interest. For example, it 
has been reported that patients with PAH have increased plasma levels 
of the ECM GAG hyaluronan (HA) [8], and that structural modification 
of HA occurs in patients with PAH [9]. In this paper, we examine the 
role of ECM in pulmonary disease. 

Structural Proteins
Collagen and elastin make up the structural ECM proteins. 

Collagens are a family of ECM proteins involved in wound 
healing, morphogenesis, chemotaxis and cell migration, cell 
adhesion, and tissue structure [10]. To date at least 28 types of 
collagen have been identified in vertebrates [11]. All isoforms 
of collagen are made up of a ‘‘triple helix’’ comprised of 
three independent collagen chains [12]. Collagen is secreted 
by fibroblasts in the stroma or adjacent tissues following 
post-translational modification in the Golgi apparatus and 
endoplasmic reticulum [13]. Elastin is a structurally important 
protein, allowing tissues to return to their original shape 
following deformation. Collagen and elastic fibers are major 
structural elements of the pulmonary connective tissue matrix, 
with different mechanical properties. The ratio of elastin to 
collagen is thought to determine ECM elasticity. Chronic 
hypoxia-induced PAH progression is correlated with collagen 
and elastin deposition in the arterial wall [14]. The elastic 
modulus of collagen fibers is greater than the elastic modulus of 
elastin fibers [15,16]. Collagen and elastin fibrils are intertwined 
to create a functional extracellular network in the lung, capable 
of generating the force required for the passive response during 
breathing. During pulmonary fibrosis, an increased proportion 
of collagen relative to elastin causes changes in tissue mechanics, 
particularly the loss of elastic properties, resulting in shortness 
of breath [17,18].

Adhesion Proteins 
A variety of proteins, including fibronectin, laminin, fibrilin, 

tenascin, vitronectin, osteonectin is involved in cellular adhesion to 
the ECM. Fibronectin (FN) includes several variant proteins, each 
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produced by alternative splicing of a single gene. Each fibronectin 
molecule is a dimeric glycoprotein formed from two fibronectin 
peptides connected by disulfide bonds [19] (Figure 2), and contains 
binding sites for the attachment of other molecules [20]. While soluble 
forms are found in the blood, insoluble forms are linked by disulfide 
bonds to collagen fibrils in the ECM [21]. Fibronectins are known to 
contribute to cell adhesion, migration, growth and differentiation [22]. 
Laminins are major ECM proteins formed from three distinct protein 
chains (α, β, γ) [23]. They contain conserved motifs for binding to cell 
surface receptors and other ECM components [24]. Critical to tissue 
structure and cell function, laminins are important in many disease 
processes [25]. Numerous studies have evaluated the role of laminin 
in tumor invasion, metastasis, and angiogenesis, demonstrating that 
abnormal synthesis of laminin, alterations in chain composition, and 
proteolytic modification of laminin may contribute to dysregulated 
interactions between cancer cells and ECM [26]. 

Glycosaminoglycans and Proteoglycans
Proteoglycans (PG) are composed of a core protein covalently 

bound to linear glycosaminoglycan (GAG) carbohydrate polymer 
chains. Gylcosaminoglycans account for the majority of the total mass 
of many proteoglycans. GAGs are composed of repeating disaccharide 
units linked end-to end to form linear heteropolysaccharide chains 
(Figure 3). 

PGs may be classified according to several sub-groups [27-29]. The 
proteoglycans aggrecan, versican, neurocan and brevican make up one 
such group based on their structural and functional similarities. The 
core proteins of aggrecan-like proteoglycans contain a hyaluronan-
binding N-terminal domain and a selectin-binding C-terminal domain. 
Aggrecan-like PGs have major structural functions within tissues, 
although versicans have also been demonstrated to stimulate the 
proliferation of fibroblasts [30]. A second group includes proteoglycans 
containing leucine-rich repeat domains, such as decorin, biglycan, 
fibromodulin and kerotocan, The leucine-rich domains of these 
proteoglycans mediate protein-protein interactions, contributing to 
the organization of the collagen network. Decorin also participates in 
signal transduction [25]. 

The anionic and non-sulfated glycosaminoglycan hyaluronan (HA), 

is an essential component of the extracellular matrix. HA is a high 
molecular weight polysaccharide consisting of repeated disaccharide 
units, and is distinguished from the other GAGs by the absence of 
sulfated residues and exceptionally high molecular weight (Figure 4). 

Hyaluronan is synthesized in the plasma membrane by any 
one of three homologous enzymes (HAS1, HAS2, HAS3) known as 
hyaluronan synthases [31]. Catalysis of HA occurs through the action 
of hyaluronidase, B-D-glucuronidase, and β-N actyl-hexoaminidase 
enzymes [32]. Prominent cell-surface receptors for HA are CD44 and 
RHAMM (Receptor for Hyaluronan-mediated motility). HA receptors 
participate in cellular signal transduction and have been associated 
with metastasis [33-36]. HA is present at high concentrations in the 
connective tissues such as the skin, umbilical cord, and synovial fluid 
[37]. Significant amounts of HA have also been reported in lung, 
kidney, brain, and muscle tissue [38]. A typical 70 kg human body will 
contain as much as 15 g HA [39]. HA contributes to cell proliferation 
and cell migration, and has been implicated in the progression of 
certain malignancies [40]. Although HA is found as high molecular 
weight (HMW) polymer under normal physiological conditions, 
low molecular weight (LMW) HA occurs during tissue injury and 
inflammation [41,42]. LMW HA has been demonstrated to induce 
expression of inflammatory genes including nuclear Factor kappa B 
(NF-KB), macrophage inflammatory protein-1a (MIP-1a) and MIP-1b 
[43,44].

Matrix metalloproteinases (MMPs) are a family of zinc enzymes 
responsible for the degradation of extracellular matrix components 
such as elastin, collagen, proteoglycans, laminin and fibronectin during 
tissue remodeling processes [45]. There are 24 defined MMP enzymes. 
These enzymes are expressed by alveolar macrophages, neutrophils, 
eosinophils and airway epithelial cells [45]. They are secreted as inactive 
pro-enzymes in a latent form and are active in a truncated form following 
further proteolytic processing in the extracellular environment. MMPs 
are divided into subgroups, distinguished by specific structural domains: 
collagenases, gelatinases, stromelysins, matrilysins, metaloelastases, 
and membrane type matrix metalloproteinases (MT-MMPs) (Figure 
5) [46].

Cytokines such as TNF-α, IL-1 and TGF-β can directly modulate 
MMP expression and enzymatic activity [47-49]. MMP expression is 
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Figure 1: Demonstration of extracellular matrix components in groups. These ECM types consist of a group of three different molecular components.
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a critical component of hormone-dependent tissue remodeling and 
development, and altered MMP activity contributes to pathological 
processes such as inflammation, tissue repair, tumor invasion and 
metastasis. MMP-mediated catalysis modulates the bioavailability of 
growth factors, cytokines and chemokines by enhancing or inhibiting 
specific interactions with adhesion receptors, modifying cell-cell and 
cell-ECM interactions [25]. Overexpression of MMP enzymes may 
contribute to pulmonary diseases [50-53]. Abnormal expression of 
MMPs and tissue matrix metalloproteinase inhibitors (DIMPs) alters 
the local cellular microenvironment to facilitate cancer invasion and 
metastasis [54].

Collectively, the individual components of the ECM shape a variety 
of pathological processes. In the present review, the role of ECM in the 
pathogenesis of pulmonary disease is discussed. 

Asthma and ECM
Asthma is a global health problem that affects approximately 300 

million people of all ages across the world. Two hundred fifty thousand 
people are estimated to die prematurely every year as a result of asthma 
[55]. Asthma is characterized by histopathological inflammation 
and tissue remodeling in the lower respiratory tract [56]. Clinical 
characteristics associated with severe asthma are airway obstruction, 
wheeze and shortness of breath, cough, nocturnal awakenings, chest 
tightness, atopy/allergic responses, non-steroidal anti-inflammatory 
reactions and airway wall thickening [57]. Changes in the function 
of airway smooth muscle are correlated with increased collagen and 
fibrillin deposition in the surrounding extracellular matrix [58]. 

Fibrosis and other forms of airway tissue remodeling play an 
important role in the loss of pulmonary function associated with asthma 
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Figure 2: Fibronectin is a dimeric glycoprotein formed from two fibronectin peptides connected by disulfide bonds.
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[59]. In recent years, the contributions of inflammatory mechanisms 
to airway remodeling have been investigated. ECM damage and repair 
mechanisms also contribute to airway pathology. For example, vascular 
remodeling in asthma alters tissue blood flow as a result of changes in 
the molecular pathology of VEGF and VEGF receptor localization and 
expression [59].

Airway remodeling in the lower respiratory tract is associated with 
increased disease severity in asthma patients [60]. This includes epithelial 
loss, sub-epithelial fibrosis, airway smooth muscle proliferation goblet 
cell and mucus gland hyperplasia, angiogenesis, and airway edema. 
Angiogenesis in asthma is characterized by the uneven enlargement 
of the bronchial vascular structures and contributes to airway wall 
thickening [61,62].

COOH

COOH

CH2OH

Figure 4: Hyaluronan is a high molecular weight polysaccharide consisting ofrepeated disaccharide units.
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One of the pathological consequences of extracellular matrix 
remodeling is the thickening of the basement membrane and smooth 
muscle hypertrophy. Basement membrane hyperplasia is strongly 
associated with asthma [63]. The essential components of the airway 
wall include type I, II, and VI collagen; type IV collagen is found in 
the basement membrane. In particular, accumulation of collagen type 
III and V, and to a lesser degree type I collagen and fibronectin in the 
reticular layer has been associated with asthma [64,65]. Myofibroblasts 
underlying the epithelium are thought to be the primary source 
of collagen deposition resulting in the thickening of the basement 
membrane [66].

MMP and DMPIs are thought to be involved in the pathogenesis 
of asthma, resulting in altered matrix turnover and influencing the 
function and distribution of inflammatory cells. While increased 
MMP/DMPI expression may enhance tissue damage, down-regulation 
of MMP/DMPI may result in fibrosis [67].

Airway smooth muscle cells (ASMCs) are influenced by the 
surrounding ECM. The composition of the ECM within the airway 
smooth muscle tissue has been evaluated by several investigators. 
Araujo et al. [68] evaluated the expression of major ECM components, 
MMPs, and tissue inhibitors in ASMCs within the lung tissue of 
asthmatic patients. Increased expression of MMP-9 and MMP-12 in the 
respiratory tract was has been associated with fetal asthma. Pulmonary 
disorders may be preventable through the inhibition of specific matrix 
proteases in cases of non-congenital asthma.

HA fragments have been demonstrated to stimulate the production 
of inflammatory cytokines in macrophages [69]. In a study evaluating 
the role of fragmented hyaluronan in asthma pathogenesis, treatment of 
mice with hyaluronan fragments resulted in the up-regulation of TLR 
(Toll-like receptor) 2 and TLR4 in macrophages, suggesting a novel pro-
inflammatory mechanism capable of triggering chronic inflammation 
and airway remodeling [70]. This result suggests that hyaluronan 
homeostasis is disrupted in patients with asthma, and the accumulation 
of hyaluronan in the lungs of asthmatic patients may be related to the 
activation of macrophages and fibroblasts. This previously unknown 
inflammatory pathway may lead to new therapeutic strategies that 
target macrophages, fibroblasts, and matrix turnover in patients with 
severe and persistent asthma.

Idiopathic Pulmonary Fibrosis and ECM
Fibrosis is a form of chronic tissue damage characterized by the 

pathologic accumulation of ECM components and the remodeling of 
pulmonary tissue. Clinical and radiological findings are used in the 
diagnosis of pulmonary fibrosis. Fibrosis results from the imbalance 
of two physiologic processes: i) the proliferation and apoptosis of 
fibroblasts, ii) the production and degradation of ECM components. 
Excessive ECM occurs as a result of an imbalance between the 
breakdown and synthesis of ECM components. Fibroblasts accumulate 
when the balance between apoptosis and proliferation is altered as a 
result of decreased apoptosis [71].

In cases of idiopathic pulmonary fibrosis (IPF), myofibroblasts 
accumulate in regions undergoing tissue remodeling, producing 
extracellular matrix components that alter organ function, including 
collagen and hyaluronan. Liang et al. [70] have reported that 
overexpression of hyaluronan synthase enzyme-2 (HAS2) results in 
severe lung fibrosis and ultimately death in mice. The suppression 
of HAS-2 may be a useful therapeutic target in the prevention of 
pulmonary fibrosis.

In a review by Fernandez and Eickelberg [72], the pro-fibrotic 
role of TGF-β in the pathogenesis of IPF has been evaluated. TGF-β 
is produced in the lungs by different cell types and has chemotactic 
and proliferative properties when activated. TGF-β contributes to the 
creation of a microenvironment, which alters ECM deposition. Rock et 
al. [73] investigated the contribution of several cell types to pulmonary 
fibrosis using different techniques, such as confocal analysis of normal 
and fibrotic human and mouse lungs using a wide range of immune 
histochemical markers. They reported that there is a relationship 
between pericytes and pulmonary fibrosis and analysis revealed that 
pericyte markers increased in fibrotic regions. 

A study investigating the molecular and cellular mechanisms of 
pulmonary fibrosis suggested that multiple mechanisms, may contribute 
to changes in fibroblast function, loss of alveolar epithelium, and 
excessive accumulation of the ECM [71]. This includes: i) inflammatory 
mechanisms such as altered expression of cytokines and cell surface 
molecules and the proliferation of immune cells, ii) oxidative stress 
and oxidative signaling mechanisms, and iii) coagulation disturbance 
including the aggregation of proteinases and their cognate receptors.

Parker et al. [74] examined the interaction between ECM and 
fibroblasts within the lung tissue integrity of patients with IPF, 
Reporting a positive feedback loop between fibroblasts and aberrant 
ECM in IPF and suggesting that interrupting this loop may be a novel 
strategy for IPF treatment. 

Blaauboer et al. [75] reported that the interaction between 
fibroblasts and ECM composition contributes to the development of 
lung fibrosis. Three proteins, elastin, type V collagen and tenascin C, 
are highly expressed in active fibrosis. Extracellular elastin leads to 
myofibroblast differentiation, contributing to disease progression.

Tissue fibrosis is the result of an abnormal response to organ 
damage and is often characterized by hyper proliferation of fibroblasts, 
their differentiation into myofibroblasts, and the overproduction of 
specific ECM components. ECM overproduction alters the biochemical 
and biomechanical properties of the surrounding tissue and contributes 
significantly to disease progression [76]. Determining the expression 
of specific ECM components at different stages of disease progression 
is an essential task in understanding the etiology of pulmonary 
disease. Given that fibrotic tissue damage occurs as a result of the 
relative concentration and distribution of specific ECM components, 
the targeted inhibition of ECM synthesis may be a novel therapeutic 
pathway in pulmonary fibrosis.

Pulmonary Arterial Hypertension (PAH) and ECM
PAH is defined as pulmonary artery pressure ≥ 25 mmHg as 

assessed by right heart catheterization at rest [77]. PAH is characterized 
by vascular regeneration, and the slow decline in pulmonary 
flexibility in PAH may result in right heart failure [78]. Although the 
histopathology of idiopathic pulmonary hypertension (IPAH) has been 
studied extensively, the mechanism accounting for the destruction 
of the pulmonary arteries in IPAH is not fully understood [79,80]. 
While the majority of previous studies have implicated abnormalities 
in the vascular endothelium and smooth muscle in pulmonary artery 
dysfunction, degradation of the extracellular matrix has also been 
associated with pathological vascular regeneration [81-83]. Recently, 
GAGs, including hyaluronan, have been demonstrated to induce 
inflammation and pathologic vascular regeneration [41,84]. Elevated 
HA concentration has been reported in the plasma and lungs of 
patients with PAH [42,85]. In a rat model of monocrolatine (MCT) 
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induced pulmonary hypertension, increased enzymatic degradation 
of HA was associated with pulmonary hypertension progression 
[51]. Pro-inflammatory HA fragments enhance pathological vascular 
remodeling, suggesting that the prevention of HA degradation may 
inhibit these pathological processes. Expression of the glycoprotein 
tenascin-C is induced by MMP secretion, and subsequently mediates 
the induction of smooth muscle cell proliferation by growth factors in 
the ECM; altered tenascin-C expression has been associated with both 
experimental and clinical pulmonary hypertension [86]. 

PAH pathology includes enhanced inflammatory activity and the 
proliferation of immune cells. Inhibition of the generation of pro-
inflammatory HA fragments may be an alternate treatment strategy in 
PAH.

Lung Cancer and ECM
While lung cancer was a relatively rare disease at the beginning 

of the 20th century, disease incidence has increased alongside the 
expansion of tobacco use and lung cancer is now the most common 
form of cancer internationally. Lung cancer accounts for 12.8% of all of 
the cancer cases and 17.8% of cancer deaths annually [87,88].

Improved treatment of lung disease requires a variety of new 
biomarkers [89]. Cell adhesion molecules play an important role 
in cancer metastasis. Hyaluronan and the cell surface HA receptor 
CD44 may be important markers of cancer progression. While CD44 
and HA are not typically expressed by normal bronchial epithelium, 
overexpression of both HA and CD44 has been reported in severe 
bronchial dysplasia and carcinoma [90,91].

HA and CD44 expression exhibit strong positive correlation in 
lung cancer tissues [92]. HA expression is associated with lung cancer, 
however the prognostic value of HA expression is dependent on the 
histological subtype of the cancer, such as tumor adenocarcinoma, large 
cell/anaplastic carcinoma, or squamous cell carcinoma [92]. Another 
study examined the prognostic significance of versican, the proteoglycan 
linking HA, collagen I, fibronectin, and laminin within the ECM [93]. 
Versican expression was detected within the tumor stroma, and the 
pattern of versican expression paralleled HA expression, suggesting 
that both molecules participate in the proliferation and distribution or 
tumor cells [93]. 

Small Cell Lung Cancer (SCLC) is an aggressive form of lung cancer 
accounting for 25% of all cases. Standard chemotherapy treatment in 
conjunction with radiotherapy is associated with a 5-year survival rate 
of 5% [94]. Rintoul and Sethi [95] have drawn attention to the role of the 
ECM in the metastasis of lung cancer and the mechanisms of resistance 
to chemotherapeutic drugs. Intracellular fluid volume may vary greatly, 
despite the fact that the tumor-stroma has the same composition as the 
surrounding normal connective tissue. The ECM surrounding SCLC 
cells contains substantial amounts of fibronectin, laminin and collagen 
IV. Cell migration and metastasis can be prevented by inhibition of ECM 
degradation. However, inhibition of integrin, and thus the alteration of 
cell-cell and cell-ECM interactions, may prevent chemo-resistance and 
block tumor migration and metastasis. Alternative treatments methods 
may include anti-integrin therapies.

ECM in COPD
Chronic Obstructive Pulmonary Disease (COPD) is associated with 

significant impairment of pulmonary repair and defense mechanisms, 
extensive tissue damage, and both local and systemic inflammation. 
COPD is considered to be systemic disease [96] and DNA methylation 

patterns in peripheral blood cells have been linked to early diagnosis 
and improved disease prognosis. In a study by Qui et al. [97], both 
previously identified COPD genes (SERPINA1) and new candidate 
genes (SUT7) were linked to COPD, and DNA methylation patterns 
associated with COPD and low lung function were evaluated on a large 
scale with gene-specific resolution. 

Annoni et al. [98] have reported that tobacco use alters the 
extracellular matrix composition in the lungs of patients with COPD. 
Altered or damaged ECM may result in continuous pulmonary 
obstruction in patients with COPD. Among COPD patients, a 
significant correlation between lung function and the abundance of 
fibronectin and elastic fibers has been reported.

Kunz et al. [99] reported that inhaled corticosteroids and smoking 
changes the composition of bronchial extracellular matrix components 
in COPD. They determined that there is an increase in versican and 
collagen III expression after treatment with corticosteroids. They 
suggested that steroids alter airway structure by increasing expression 
of specific ECM proteins (versican and collagen III) in COPD that are 
associated with improvements in lung function.

The role of ECM components such as elastin, fibronectin, and HA in 
COPD may be further evaluated by measuring enzyme expression and 
plasma concentrations of ECM components. The statistical association 
of changes in the expression of specific ECM components and COPD 
risk may suggest new treatment strategies.

Numerous studies have demonstrated the importance of ECM in 
pulmonary pathologies. Evaluation of the intracellular function and 
basic structural properties of proteoglycan adhesion proteins and 
structural proteins may reveal new approaches to the treatment of 
pulmonary disease. Examination of the specific effects of inhibition 
or modification of individual ECM components may reveal novel 
pathways in pulmonary pathobiology.
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