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Abstract
“Substance use disorder” (SUD) is a common, chronic, remitting/relapsing group of psychiatric disorders having 

devastating effect not only on the individual but also impose socio-economic burden on their families and the society 
at large. They are often accompanied with numerous maladaptive behaviors and a persistent and compulsive, 
uncontrolled use of substance. Interestingly, they have moderate to high heritability and seem to be modulated by both 
genes and environment. Recent researches suggest that interactions of environmental and genetic factors designate 
the significance of epigenetic mechanisms, which have been found to occur in SUDs. This review makes an attempt to 
provide an overview regarding the various types of epigenetic modifications and their application in relation to SUDs.
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Introduction
Substance use disorders are a group of psychiatric disorders 

influenced by various genetic, neurobiological, social and 
environmental factors. Researches have revealed that some common 
heritable genetic components may predispose an individual to 
substance dependence which is estimated to be as high as 20–50% [1]. 
However, researchers have also elucidated the inter-linked nature of 
genetic and environmental factors in order to clarify the idea that some 
specific biological factors and broader biosocial influences interact 
intricately to develop a predisposition or perpetuate substance abuse/
dependence [2]. Although unclear, the interactions between various 
genotypes and environmental influences point toward an important 
role for epigenetic mechanisms in drug dependence. Nevertheless, this 
epigenetic perspective can be a more novel and precise way of explaining 
the chronicity of psychiatric conditions including SUDs. So what do 
we mean by epigenetics? According to Jaenisch and Bird, epigenetics 
is broadly defined as “a series of biochemical processes through which 
changes in gene expression are achieved throughout the lifecycle of an 
organism without a change in DNA sequence” [3]. These changes can 
be immediate or delayed and may be passed on to daughter cells, or to 
successive generations through the process of cell division. In simpler 
terms, it is the vector through which environment interacts with an 
individual’s genome to determine all aspects of function and resilience 
in terms of health and disease (Figure 1). More specifically, covalent 
modifications of chromatin (DNA-histone protein complex), present 
in the cell nucleus is referred to as epigenetics. Epigenetic mechanisms 
perpetuate transient modulation as well as lasting variation in gene 
expression. The possible impact of the environment on epigenetic 
regulation has attracted substantial interest in researchers. Undoubtedly, 
a proportion of stress-exposed genetically vulnerable individuals do go 
on to develop SUDs which clearly represent low resilience factors and 
a high gene-environment interactions [4]. Stable epigenetic changes 
may become ideal mediators to produce changes in the functionality 
of the brain along with poor resilience factors for the development of 
substance use disorder.

Mechanism of Dependence
Substance abuse/dependence may be a resultant of 

impulsive→compulsive use of the substance. There are frequent episodes 
of abstinence which may/may not follow relapse. There are identifiable 

neurobiological mechanisms of dependence and much has been 
attributed to the abnormal reward circuitry. Drug-induced changes in 
gene expression in various brain reward systems, such as the nucleus 
accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental 
area (VTA), represent one of the mechanism thought to contribute 
to dependence [5]. Changes in gene expression have been implicated 
in transition from chronic exposure to drug, to drug dependence; for 
example, increased transcription factor ΔFosB to several folds in the 
NAc is seen following chronic drug exposure and has been implicated 
in the transition to a dependent state [6]. Moreover, altered expression 
of specific genes, such as activator of G-protein signaling 3 (AGS3) 
and brain-derived neurotrophic factor (BDNF) are involved in drug 
relapse in rodents [7]. Moreover, conditioned responses and an 
environmental context-dependency to the behavioral sensitization are 
also apparent. Chronic cocaine not only induces a variety of long-term 
biochemical and physiological effects, but also induces changes in the 
neurotransmitter GABA in the ventral striatum (nucleus accumbens) 
due to the modification in the dendritic spines. These GABAergic 
neurons have regulating effects on both glutamatergic neurons of pre-

Figure 1: This figure illustrates high genetic and environmental factors and 
poor resilience interplaying in substance use disorder.
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frontal cortex and dopaminergic neurons in the nucleus accumbens 
[8]. Hence, it appears that epigenetic mechanisms are regulated by 
substance abuse in brain’s reward regions and might contribute to drug-
related behaviours.

Epigenetic Regulation in SUDs
In many studies, environmentally induced changes in gene 

expression are associated with altered DNA methylation patterns or 
with altered histone modifications [9]. Interestingly, the possibility 
of an epigenetic contribution to psychiatric disorders, specifically 
schizophrenia, autism and substance use disorder has been increasingly 
focussed upon for an attractive molecular hypothesis. 

Histone modification

The nucleotides of DNA in a mammalian genome have 
extraordinary degree of compactness and organization within the 
chromatin. The nuclear material is composed of DNA, histones and 
non-histone proteins [3]. The fundamental unit of chromatin is the 
nucleosome consisting of ~147 base pairs of DNA that are wrapped 
tightly (supercoiling) around a core histone octamer (two copies each 
of H2A, H2B, H3, and H4) (Figure 2). This highly condensed structure 
has control over gene expression, which occurs partly by gating the 
access of transcriptional activators to DNA [10]. The histone proteins 
assemble at one end called the carboxy (C) terminal to form the histone 
core, with the other end, in the amino (N)-terminal “tail” region, 
projecting out from the histone core. The post-translational histone 
modification occurs at the (N) terminal and includes acetylation, 
phosphorylation and methylation of histones. This diversity of 
histone modifications supports the “histone code hypothesis,” which 
hypothesizes that the sum of modifications at a particular gene defines 
a specific epigenetic state of gene activation or silencing [11]. Histone 
acetylation is catalyzed by histone acetyltransferases and reversed 
by histone deacetylases (HDACs), which generally drives a more 
permissive (open) state of chromatin and an increased gene expression. 
Histone methylation, catalyzed by histone methyltransferases (HMTs) 
and reversed by histone demethylases (HDMs), can either activate or 
repress gene transcription (increased or decreased gene expression) 
depending on the amino acid residue undergoing methylation. Histone 
acetylation and thus chromatin remodelling may regulate a protein 
called cyclic-AMP responsive–element-binding (CREB) protein. This 
protein helps modulate the transcription of certain genes by binding 
to a specific sequence on the DNA. Importantly, CREB binding protein 

is essential for both short-term and long-term memory formation and 
consolidation. CREB is involved in long-term memory formation, 
synaptic plasticity that has been associated with dependence. Alcohol-
induced damage to nerve cells in the hippocampus and cerebellum has 
also been associated with decreased CREB functioning [12,13]. A well-
established molecular model for long-term memory has been studied 
with a notion that the facilitatory neurotransmitter serotonin (5-HT) 
activates the cAMP-dependent protein kinase (PKA) to phosphorylate 
CREB-binding protein (CBP) and phospho-CREB leads to the induction 
of two immediate early genes, C/EBP and ubiquitin C-terminal 
hydrolase, as well as several late effector genes including eEF1A and 
the RII subunit of PKA. In addition to serving as a scaffold protein in 
CREB promoter complexes, the recruited CBP also has intrinsic histone 
acetyltransferase activity and can modify histones at promoters, resulting 
in the decondensation of DNA and thus enabling gene expression [14]. 
Interestingly, studies have often reported decrements in hippocampal 
BDNF caused by a repressive epigenetic mechanism involving 
trimethylation of histone H3K27 [15,16]. However, trimethylation of 
histone H3K27 cannot be reversed by antidepressant treatment despite 
increase in the hippocampal BDNF levels. Nonetheless, a lifelong 
persistence of the epigenetic marks related to stressors early in life is 
a likely mechanism for increased reactivity of animals and humans to 
subsequent stressors later in life. Early traumatic life experiences may 
exhibit life-long decrements in BDNF in the prefrontal cortex, based 
on increases in DNA methylation. Interestingly DNA methylation is 
also involved in cocaine-induced behavioral sensitization in mice, and 
the sensitized response is again blocked by the methylation inhibitor 
zebularine [17]. Global H3 and H4 acetylation levels in the Nucleus 
accumbens (NAc) are increased after a single exposure to cocaine 
and remain elevated with chronic administration [18,19]. An acutely 
increased histone acetylation generally increases behavioural response 
to seek cocaine, a more sustained increases in acetylation may have 
attenuating effects on cocaine’s rewarding tendency. Moreover, acute, 
but not chronic, cocaine increases H4 acetylation at the c-Fos promoter 
and chronic cocaine increases H3 acetylation at the BDNF promoters 
in NAc (Table 1). 

Figure 2: This figure illustrates nucleosome consisting of ~147 base pairs of 
DNA that are wrapped tightly (supercoiling) around a core histone octamer 
(two copies each of H2A, H2B, H3, and H4) [22]

Histone modifications Transcription effects noted
Acetylation Increased transcription
Methylation Increased/Decreased transcription

Phosphorylation Increased transcription

Table 1: Histone modifications and their effects on transcription.

Figure 3: This figure illustrates schematic representation of DNA 
methylation, which converts cytosine to 5’methyl-cytosine via the actions of 
DNA methyltransferase (DNMT) (S-adenosylethionine (SAM) is the methyl 
group donor, which gets converted to S-adenosylhomocysteine.
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translation into a protein product and mRNA degradation. Researchers 
have found that substance dependence is associated with both up and 
down regulation of miRNAs mimicking the direction of each of these 
changes affecting the reward circuitry. It has also been implicated in 
gene regulation and synaptic plasticity [25]. Several genes implicated in 
addiction models such as ΔFosB, dopamine transporter, and glutamate 
receptor subunits, have also been related to drug-triggered alterations 
in specific miRNAs [26]. Moreover, miRNAs are altered in NAc after 
chronic cocaine use [27]. However, extensive researches on miRNA 
affected by chronic substance intake and its relationship have yet to be 
elucidated.

What is mito-epigenetics?

Mitochondria contain their own circular DNA that encodes for 
proteins, transfer RNAs, ribosomal RNAs and also non-coding RNAs. 
Mitochondrial DNA is particularly important as it produces and 
regulates formation of the reactive oxygen species (ROS). Moreover, 
production of ROS at mitochondria integrates cellular energy state, 
concentration of metabolites in the neurons and other upstream 
signaling events. These have important implications in cellular stress 
signaling, maintenance of stem cell populations and even cellular 
survival [28]. In fact, addictive drugs enhance ROS production 
and generate oxidative stress that in turn alters mitochondrial and 
nuclear gene expressions [29]. Very recently, an epigenetic focus has 
been directed towards mitochondria and evidence indicates that 
mitochondria are involved in epigenetic regulation of nuclear genome 
including the methylation status of mitochondrial genome [30,31]. The 
complex transcription and epigenetic regulation of mtDNA induced by 
addictive substances in the brain have received very little attention and 
requires in-depth exploration. 

The Way Forward
Based on the current researches it is evident that there is an 

exponential growth of epigenetic research to understand the mechanisms 
underlying substance use disorder and their related behaviors. However, 
the major limitations in such researches are that they are conducted on 
rats and precise research on human subjects may require post-mortem 
human brain tissue. This is because epigenetic changes are often tissue 
or cell specific and thus most likely to be apparent in the brain areas 
in which addiction is primarily manifested. Unfortunately, the low 
and middle economic countries do not possess high-quality post-
mortem brain samples that have been well characterized for substance 
dependence. Additionally, very little is known about how factors such 
as age, sex and environmental exposure influence epigenetic patterns, 
which requires proper matching of subjects. Despite the fact, much 
is anticipated in the future with regards to epigenetics in psychiatric 
disorders and more specifically SUDs.
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