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Introduction
The rates of childhood food allergy (FA) and eczema are continuing 

to increase as part of what appears to be a “second wave” of the allergy 
epidemic [1]. In this context, primary prevention strategies aimed at 
reducing the onset of IgE sensitization are urgently needed.

Because progressively earlier presentations of food allergy implicate 
early environmental influences, there is intense interest in the prenatal 
factors inducing tolerogenic immune responses. Studies eliminating 
food allergens during pregnancy have failed to show reduction in the 
prevalence of long-term IgE-mediated food allergy in children, and 
recent data provides direct evidence supporting early oral exposure as a 
means of preventing development of allergy. 

The parallel between the increase in food allergies and changes in 
dietary components during the last decades has also led researchers 
to investigate preventive strategies aiming at restoring the dietary and 
gut microbial balance, mainly through supplementation with vitamins, 
polyunsaturated fatty acids and probiotics. Other dietary factors 
currently under investigation in animal studies to prevent food allergy 
include polyphenols and isoflavones. Furthermore, there are also new 
data on Chinese herbal formula FAHF-2, proved to be effective in 
induction of long term tolerance in peanut allergic mice, which was 
associated with skewing Th2 immune responses to Th1 (and regulatory) 
response. Because maternal allergies increase the risk of peanut allergy 
in offspring, restoration of maternal food allergy points to the potential 
role to FAHF-2 for prevention of offspring food allergy. 

In this article we will review current knowledge from previous 
publications, published abstracts and newly generated data from animal 
and clinical studies on the role of maternal dietary modification for the 
prevention of food allergy. 

Exposure to Food Allergens
Studies of food allergen avoidance during pregnancy, lactation, and 

infancy have consistently failed to reduce long-term IgE-mediated food 
allergen in children [2]. 

Clinical studies

Approximately 74% of peanut (PN) anaphylactic reactions occur 
at first known exposure in infants [3,4] suggesting a critical window 
for early life prevention [5]. The recommendation for mothers to 
implement a PN restrictive diet during pregnancy/lactation was 
abandoned in 2008 [6] due to the lack of conclusive evidence of 
benefit [7], and early evidence that it might even be harmful [8,9]. 
The theory behind the early life PN restriction diet is mainly based 
on the conception of “in utero or early life sensitization” based on the 
findings of allergens/antibodies presented in amniotic fluid and cord 
blood [10], and placenta [11,12] and peanut antigen in breast milk of 
lactation women after ingestion of PN [13], although studies providing 
a direct association of offspring sensitization were lacking. Recently, 
an alternative hypothesis that early life introduction of PN or other 
allergenic foods may be beneficial because oral tolerance induction is 
an active process that requires antigen has been put forward [14,15]. 
This is based on several observational studies. For example, a recent 
cross-sectional study of Jewish children in Israel and the UK, found that 
the prevalence of peanut allergy (PNA) was 10-fold higher in the UK 
(1.85%) than in Israel (0.17%, p<0.001), and that peanut is introduced 
earlier and is eaten more frequently and in larger quantities in Israel 
than in the UK by 8-14 month infants [16,17]. However, the evidence of 
benefit of early life exposure is no consistent. Recent studies showed that 
maternal consumption of peanut during pregnancy is associated with 
peanut sensitization in atopic infants [18,19]. Conflicting findings may 
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Abstract
Effective primary preventions strategies aimed at reducing the onset of IgE sensitization are urgently needed as 

the incidence of childhood food allergy keeps increasing. 

Studies eliminating food allergens during pregnancy have failed to show reduction in the prevalence of long-term 
IgE-mediated food allergy in children, and recent data provides direct evidence supporting early oral exposure as a 
means of preventing development of allergy. Since effects on early immune programming may be more significant 
in utero, there has been increasing interest in the potential protective role of maternal dietary modifications on the 
development of FA in offspring.

In this article, we will review the current knowledge from animal and clinical studies on the role of maternal 
dietary modification, mainly through supplementation with vitamins, polyunsaturated fatty acids and probiotics, for 
the prevention of food allergy. Besides, the potential role of some promising FA treatments like Chinese herbal 
formula FAHF-2 for the primary prevention of FA in offspring will be reviewed.
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be due to uncontrolled environmental factors, timing of introduction to 
PN and different study protocols and populations, as well as undefined 
co-factors in maternal diet such as microbes [18-20]. In addition, 
retrospective maternal recall of dietary intake during pregnancy (and 
or lactation), sometimes months or years later, may contain recall bias. 
At present, the standard practice for PNA and other food allergies is 
strict allergen avoidance. There is no clinical study reporting whether 
peanut allergic mother consumption of controlled low doses of peanut 
that do not trigger clinical reactions would prevent offspring peanut or 
other food allergies.

Maternal allergenic food consumption for preventing food 
allergy in offspring: Animal studies

In recent years several studies in animal models have provided 
direct evidence supporting early oral exposure as a means of preventing 
development of allergy. 

Melkild et al. [21] showed that intraperitoneal immunization of 
naïve mice with ovalbumin and adjuvant (Al(OH)3) during pregnancy 
and lactation significantly reduced the specific IgE response and 
increased the IgG2a response in their offspring. Moreover, the IgE 
suppression was stronger if maternal allergen exposure was during 
early pregnancy (3 days into pregnancy) compared to a late pregnancy 
exposure (17 days into pregnancy). The same group reported that the 
protective effect of maternal immunization was affected by the type of 
adjuvant used: while offspring from mothers immunized with OVA 
and either pertussis toxin (PT) or Al(OH)3 showed reduced levels of 
OVA-specific IgE and IgG1 and increased levels of OVA-specific IgG2a 
antibodies, maternal immunization with CpG and OVA did not affect 
antibody responses in offspring [22]. However, whether this effect 
is dependent on the specific adjuvant and/or the route of exposure 
employed has to be further investigated.
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Figure 1:  Maternal allergenic food consumption for preventing food allergy in offspring.Transmission of maternal specific immunoglobulins by breast milk in two 
murine models of FA
A: Maternal peanut consumption provides protection in offspring against peanut sensitization [23]
Left: Experimental protocol of mothers’ and offsprings’ peanut (PN) sensitization. Female C3He/J mice were fed either with peanut and cholera toxin ig (PN+CT), 
peanut ig (PN) or cholera toxin alone (CT) for five weeks and, after mating with naïve males, during pregnancy and lactation. An unimmunized group was employed 
as a control.  5-week old offspring from all the 4 groups were sensitized with PN+CT i.g. weekly for 5 weeks followed by 2 boosting doses. Mothers were sacrificed 
at weaning and offspring at week 15 for analysis.
Right: Peanut-specific immunoglobulin levels in mouse milk: peanut-specific IgG2a (ng/mL), peanut-specific IgG1 (ng/mL) and peanut-specific IgA (ng/mL) 
measuredby antigen-specific ELISA. Data are expressed as means ± SEM of duplicates for each group (n=3–4) *P<0.05, ***P<0.001 vs Unimmunized. 
B: Transfer of specific immunoglobulin by breast milk leads to antigen-specific offspring protection from food allergy [26]
Left: Experimental protocol. Sensitized mice were exposed to 1% OVA in drinking water for 2 weeks immediately after delivery. Offspring were weaned at 4 weeks 
and 5-week-old offspring were used for the FA model.
Right: OVA-specific IgG1 and IgA levels in breast milk. OVA-specific IgG1 is only found in the breast milk from OVA-sensitized mothers, which implies that mother 
micesecrete IgG1 into their breastmilk. OVA-specific IgA is only found in the breastmilk from OVA-sensitized and OVA-exposed mothers. Data are shown as the 
means and individual data points. N.D.: not detectable. *P<0.05, **P < 0.01, n=5–9.
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López-Expósito et al. [23] demonstrated that offspring of peanut 
allergic mothers exhibited significantly increased susceptibility to PN-
induced IgE sensitization, and that low-dose consumption of peanut 
(beneath the threshold of triggering clinical reactions) with CT during 
pregnancy and lactation reduced the risk of peanut allergy in murine 
offspring. Further study by this group also showed that this effect 
persisted for at least 15 weeks. Importantly, administration of peanut 
extract alone was markedly less effective than peanut plus the mucosal 
adjuvant cholera toxin (CT) in the suppression of peanut-specific IgE 
or Th2 cytokine responses, and CT alone had no effect. Consistently, 
increased peanut specific-levels of IgG2a and/or IgA in milk were seen 
when peanut and cholera toxin were administered together, but not PN 
or CT alone, suggesting that transmission of maternal immunoglobulin 
may play a role in the observed protection (Figure 1) [24]. The important 
role of a mucosal adjuvant in providing protection against peanut 
sensitization was demonstrated in this study and we recently found that 
offspring protection also occurs when the non toxic to human mucosal 
adjuvant cholera toxin B is used. 

Preventing allergy in offspring by maternal mucosal (intranasal) 
immunization has also been confirmed in another recent study in which 
maternal immunization with OVA reduced OVA-specific IgE and IgG1, 
and increased IgG2a and Th2 cytokine responses in offspring [25]. 

A recent study by Yamamoto et al. [26], showed that feeding OVA 
to lactating mice prevented offspring OVA allergy-induced diarrhea 
and suppressed the increases in plasma OVA-specific IgE levels and 
Th2 cytokine mRNA expression levels in the proximal colon, as well 
as the infiltration of mucosal mast cells into the colon. Detection of 
OVA in breast milk of from OVA-exposed nonallergic mothers during 
lactation, and increased titers of OVA-specific IgG1 and IgA in breast 
milk from allergic mothers, suggests that transfer of dietary antigens 
along with their specific immunoglobulin by breast milk leads to 
antigen-specific offspring protection from food allergy (Figure 1). 
How the breast milk antibodies provide protection against FA in the 
child has not been studied. However, in an asthma model Mosconi 
et al. [27] demonstrated that milk-borne OVA–IgG complexes were 
actively transferred from the mothers to the pups through the FcRn. 
Furthermore, FcRn-mediated transfer of OVA–IgG complexes resulted 
in the induction of FoxP3 regulatory T cells in mesenteric lymph nodes, 
and that FcRn-deficient mice breastfed by OVA-exposed sensitized 
mice were not protected against allergic airway inflammation.

Taken together, the results of these animal studies suggest that 
induction of oral tolerance by maternal ingestion of food antigens 
during lactation may be a strategy for prevention of FA in infants.

Maternal Dietary Supplement Interventions 

In recent years, there is an active research focused on assessing 
whether the manipulation of nutritional factors, like vitamin D or 
polyunsaturated fatty acids (PUFA), in maternal diets may prevent the 
development of food allergy in their offspring.

Vitamin D

Vitamin D controls effector immune functions, promotes regulatory 
immune response and induces innate immune defenses [28,29]; all of 
which could be relevant to allergic disease.

Some studies have pointed towards an early induction of tolerogenic 
immune responses by maternal vitamin D intake. Chi et al. [30], have 
shown that higher vitamin D levels at birth may be associated with a 
lower number of T regulatory cells, and a relation between vitamin D 

supplementation during pregnancy and increased cord blood mRNA 
levels of the leucocyte receptors ILT3 and ILT4, both critical for the 
generation of T suppressor cells and induction of immunological 
tolerance, has been recently reported [31].

Clinical studies: Clinical studies on the effect of vitamin D in 
allergic diseases are mainly observational and have yielded very 
heterogeneous results, suggesting that either excessive or, conversely, 
vitamin D deficiency result in increased allergies (reviewed in [28]).

On one hand, allergies increased coinciding with vitamin D 
supplementation intervention programs to prevent rickets in childhood 
[32], and increased risk for asthma and food allergies has been reported 
among children receiving early vitamin supplementation [33]. In a 
recent German cohort study, it has been described that higher maternal 
25(OH)D3 results in a higher risk of food allergy sensitization at 2 
years of age [34]. On the other hand, the vitamin D deficiency (VDD) 
hypothesis argues that inadequate vitamin D is responsible for the 
increase in allergic diseases. Infantile vitamin D has been associated 
with higher rates of atopic disease at the age of 6 and 14 years [35] 
and enhanced eczema severity in children aged between 8 months 
and 12 years [36]. Several studies have reported higher rates of food 
allergy/anaphylaxis or proxy measures at higher absolute latitudes 
and in infants born in fall/winter compared with sunnier months in 
Europe, the United States, and Australia [37], and higher rates of food 
sensitization have been described in infants born to mothers with low 
vitamin D intake during pregnancy [38].

However, vitamin D insufficiency itself cannot be related to the 
increase of a topic diseases since allergy was nearly absent during 
rickets epidemics that occurred in the last centuries. It can also be 
argued that in northern developed countries like USA, where the use of 
dietary supplements is highly extended, VDD may be very unlikely and 
thus could not explain the increase of atopic disease in these countries. 
Nevertheless, an 8% of the US population is at risk of vitamin D 
deficiency [39] and a recent study on infants and their mothers in New 
England found that more than half of the infants and approximately 
one third of the mothers who gave birth were vitamin D deficient at the 
time of delivery even when prenatal vitamins were taken regularly [40]. 

Significant genetic variability of the response to dietary 
supplementation and metabolism of vitamin D, have been recently 
described [41] and could account for VDD even in people at low risk.

The apparent paradox of both vitamin D insufficiency and vitamin 
D supplementation having been linked to allergy and asthma may be 
explained by epigenetic programming in pregnancy by low vitamin D 
levels. Recent studies provide evidence for gene-vitamin D interaction 
effects on food sensitization. In a study on 649 children, vitamin D 
deficiency (VDD) increased the risk of food sensitization only among 
individuals with certain IL4 and MS4A2 (MS4A2 (Fc epsilon receptor 
1 beta-chain) genotypes [42]. Later, Vimaleswaran et al. confirmed the 
association of VDD with higher total IgE levels in adults with IL4 and 
MS4A2 SNPs [43]. These data highlight the need to consider possible 
ethnic differences in the allergy-related responsiveness to VDD.

Studies examining the effect of maternal vitamin D status on food 
allergy on offspring, summarized in table 1, are mainly observational 
[44-48]. Randomized control trials are ultimately required to determine 
any potential role of vitamin D supplementation in preventing allergic 
disease. Until then, no clear recommendation on the use of vitamin D 
in pregnancy for the prevention of allergies can be formulated.
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Polyunsaturated Fatty Acids (PUFA)

Lower consumption of n–3 PUFA is a key characteristic of modern 
‘western’ diets, which are typically rich in more pro-inflammatory n–6 
PUFA. This has raised interest in the use of fish oil as a preventative 
strategy to ‘restore the balance’ of n–3/n–6 PUFA, supported by the 
recognized anti-inflammatory effects of n–3 PUFA and evidence that 
metabolic products of n–6 PUFA are more inflammatory.

Animal studies: The dietary ratio of n-6/n-3 fatty acids during 
gestation and throughout lactation has been found to influence the 
induction of immunological tolerance to OVA in neonatal rats [49]. 
Moreover, dietary supplementation with n-3 PUFA (fish oil source) of 
OVA-sensitized mice reduces serum specific OVA-antiIgE and IgG1, 
small intestine edema and eosinophil infiltration, mucus production, 
and Paneth cell degranulation [50]. These results are consistent with the 
findings of Watanabe et al. [51] that the IgE antibody response to egg 
albumin was significantly lower in mice fed with safflower seed oil. On 
the other hand, Johansson et al. [52] found, in a murine model of airway 
hypersensitivity (Th2), that mice fed fish oil produced higher levels of 
OVA- specific IgE and exhibited greater lung eosinophil infiltration. 
As far, there has been no report in animal model how maternal PUFA 
intake influences offspring food allergy outcomes.

Clinical studies: There is interest in the potential protective role 
of maternal n–3 PUFA supplementation during pregnancy, particularly 
as effects on early immune programming may be more significant in 
utero. 

A systematic review conducted in 2009 [53] concluded that 
“supplementation with omega3 and omega6 oils is unlikely to play 
a role in the strategy for the primary prevention of sensitization or 
allergic disease”. The few studies specifically addressing the preventive 
effect of n-3 PUFA supplementation of pregnant women on children 
at risk of food allergies, summarized in table 2, have not yet confirmed 
their beneficial role as a strategy for the primary prevention of food 
allergy [54-58].

Antioxidants

The available epidemiological, animal, molecular and 

immunological data suggest potentially beneficial associations between 
maternal intake of some antioxidants during pregnancy and childhood 
asthma and to a much lesser extent, atopic dermatitis and allergic 
rhinitis (reviewed in [59]). To date, no such data are available for food 
allergy.

Fruit polyphenols and soybean isoflavones effect on FA in 
animal models

Dietary polyphenols are a class of bioactive compounds found in 
abundance in plant (tea, cocoa, coffee, etc.) and fruit (apple, grapes, 
pomegranate, etc.) sources. Their effects on allergic disorders are just 
beginning to be unraveled and future research is required to substantiate 
their role as anti-allergy agents. Certain classes of polyphenols can 
influence the development of allergic immune responses at two critical 
stages, during allergic sensitization and following re-exposure to the 
allergen. Polyphenols can form insoluble complexes with allergenic 
proteins and render them hypoallergenic, which leads to inefficient 
antigen presentation by specialized cells such as dendritic cells (DC) 
[60]. 

Of particular importance to food allergy, polyphenols bind 
irreversibly to peanut allergens and reduce the allergenicity of peanut 
extracts [61]. Zuercher et al. [62] in an in vivo food allergy murine 
model showed that consumption of polyphenol enriched apple extract 
by OVA-sensitized mice attenuated clinical symptoms upon challenge, 
accompanied by reduced levels of intestinal mast cell protease, 
diminished cytokine secretion by lymph node (MLN) cells and reduced 
intestinal mRNA expression of various T-helper type-2 associated and 
pro-inflammatory genes. These data are in agreement with a previous 
study by Akiyama et al. [63], in which feeding of complex apple 
polyphenols reduced systemic anaphylaxis after allergen challenge in 
OVA-sensitized mice. 

A word of caution to this approach must be mentioned, particularly 
in relation to allergen detection systems; the high polyphenol content 
within the food matrix can mask the detectable levels of allergen. 
Further research is needed in order to validate these findings and to 
generate hypoallergenic foods, by forming insoluble complexes with 
allergenic proteins, via polyphenol treatment.

Publication Study design Outcome
Nwaru et al.
(2010) [38]

Prospective birth cohort study.
Food intake questionnaire 8m pregnancy
sIgE serum samples children 5y

Increased vitamin D intake during pregnancy is negatively associated with 
the risk of food allergies at 5y age.

Vasallo et al. 
(2010) [44]

Medical record review of all patients presenting to emergency departments 
for food-related acute allergic reactions between 2001-2006.

 Seasonal fluctuations in UV-B irradiation and perhaps vitamin D are 
involved in involved in the pathogenesis of food allergy in children

Mullins et al.
(2011) [45]

Comparison of food allergy rates by season of birth between children with FA 
diagnosis in a specialist referral clinic and population births controls.

Reduced UV exposure/vitamin D status might be responsible for higher 
rates of food allergy of children born in autumn/winter

Keet et al.
(2012) [46]

Logistic regression comparison of fall or non fall birth between (i) food 
allergic and nonallergic subjects in NHANES, and (ii) food allergic children 
from Johns Hopkins and the general Maryland population

Fall birth is associated with increased risk of food allergy, and this risk is 
greatest among those most likely to have seasonal variation in vitamin D 
during infancy and those at risk for skin barrier dysfunction, suggesting that 
vitamin D and the skin barrier may be implicated in seasonal associations 
with food allergy.

Mullins et al.
(2012) [47]

Neonatal serum 25(OH)D3 levels were compared between children with IgE-
mediated peanut allergy and matched population births.

Nonlinear relationship between neonatal 25(OH)D level and childhood 
peanut allergy: slightly higher levels were associated with lower risk than 
those in the reference group.

Jones et al.
(2012) [48]

Prospective birth cohort study.
Food intake questionnaire last trimester pregnancy. 
Cord blood 25 (OH)D3 levels at delivery 

No association between vitD status and allergen sensitization or presence 
of IgE-mediated food allergy.
Lower cord blood vitamin D status risk factor for the development of 
eczema in the 1st y.

Weisse et al.
(2013) [34]

LINA cohort study
Maternal and cord blood 25 (OH)D3 levels during pregnancy & at birth.
Total IgE, sIgE for inhalants and food allergens at birth 1 & 2 years.
Atopic outcomes (AD, FA) recorded as parental report of a doctor diagnosis

Higher maternal 25 (OH)D3 levels associated with a higher risk of 
sensitization to food allergens at 2y. 
Cord blood 25 (OH)D3 levels were negatively associated with regulatory T 
cell numbers.

Table 1: Clinical studies on the role of vitamin D during pregnancy in food allergy [28].

http://dx.doi.org/10.4172/2155-6121.S3-005
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Resveratrol, a polyphenolic compound abundant in grapes and red 
wine, has a wide range of biological and pharmacological activities, 
including anti-inflammatory, anti-oxidative, and anticarcinogenic 
effects via multiple molecular mechanisms documented mainly in 
animal disease models (reviewed in [64]). In a recent study, Okada et 
al. [65] examined the effects of dietary resveratrol in a mouse model of 
food allergy induced by oral administration of OVA with the mucosal 
adjuvant cholera toxin (CT). The study demonstrated that ingestion of 
resveratrol prevented CT-driven mucosal sensitization to OVA in mice, 
and decreased OVA plus CT-induced splenocytes and bone marrow 
derived dendritic cell costimulatory molecule expression levels by as 
yet undetermined mechanism.

Soybeans are the most common source of isoflavones in the human 
diet, and some epidemiologic studies have linked soy intake with 
beneficial effects in patients with allergic diseases [66]. Masilamani 
et al. [67], showed that the dietary isoflavones genistein and daidzein 
suppressed allergic reactions to peanut in mice and regulated CT-
activated human monocyte-derived DCs function in vitro. Recently, 
they extended this study by determining the effects of isoflavones on 
murine Th1 immune responses in vitro and in vivo [68], and found 
that they suppressed the expression of LPS-induced DC maturation 
markers, B7 costimulatory molecules and MHC molecules and 
selectively suppressed cytokine secretion (TNFα, IL-10, IL-6, IL-
12) from LPS-activated DCs. Taken together, these data demonstrate 
immunoregulatory properties of isoflavones, which could have 
implications for future allergy prevention strategies. Since vegetables 
and fruits are the major sources of flavonoids, although there is no 
direct evidence that maternal consumption of flavonoid influences 
offspring food allergy outcomes, studies have shown that maternal 
consumption of vegetables and fruits are negatively associated with 
asthma risk in offspring [69]. Research into evaluation of the effect 
of maternal consumption of flavonoid on food allergy outcomes in 
offspring should be encouraged.

Possible mechanisms of dietary modification on offspring 
allergy outcomes

Although changes in dietary components during the last decades 
may have played a role in the increasing incidence of food allergy [1], 
they cannot explain the allergy epidemic all over the world. On the 
other hand, the rapid increase of allergic diseases in a short period of 
time makes it unlikely to be the result of genetic changes alone. It seems 
more likely that exposure to a combination of environmental factors 
may be producing, through epigenetic modifications, heritable change 
in gene expression that increase the risk of allergic disease.

DNA methylation is probably the best characterized inheritable 
epigenetic modification influenced by environmental factors [70]. DNA 

methylation status is heritable, but it is also plastic, thereby providing a 
potential opportunity to convert a Th2 predisposition to a tolerogenic 
Tregs status by manipulation of the maternal environment. A maternal 
gestational diet high in folic acid, a methyl donor in methylation 
reactions, has been shown to enhance the severity of offspring allergic 
airway disease [71] in mice. Exposing mothers to a farm environment 
and raw farm milk during pregnancy increased numbers of CD4+CD25+ 
T cells in cord blood, which was associated with significant DNA 
demethylation within the foxp3 locus [72]. However, this has not yet 
been shown to have an effect on their offspring.

Our group recently found that maternal consumption of low doses 
of peanut plus the adjuvant cholera toxin subunit B in mice reduced 
peanut allergy risk in offspring that was accompanied by a significant 
reduction in DNA methylation at the Foxp3 promoter CpG site and 
increased IL-4 promoter methylation in the intestinal tissue, suggesting 
that epigenetic modifications may be involved in induction of tolerance 
to food allergen in this model.

Maternal Consumption of Probiotics for Prevention of 
Food Allergy in Offspring

With increasing evidence that allergic disease are associated with 
disruption of the microbial ‘balance’, including altered early colonization 
and reduced diversity of intestinal flora, attempts have been made 
to prevent allergic disease by restoring a more optimal pattern of 
microflora through probiotic supplements during pregnancy and/or 
infancy [73]. The Food and Agricultural Organization of the United 
Nations and the World Health Organization [74], defines probiotics as 
‘living microorganisms, which when administered in adequate amounts 
confer health benefits on the host. The major sources of probiotics are 
dairy products that contain Lactobacillus and Bifidobacterium species. 
The effects of probiotics have been attributed to restoration to normal 
of increased intestinal permeability and unbalanced gut micribiota, 
improvement of the intestine’s immunologic barrier functions, and 
reduced generation of proinflammatory cytokines characteristic of 
local and systemic allergic inflammation [75].

Animal models

Schiavi et al. [76], in a murine model of shrimp-induced anaphylaxis, 
found that oral administration of a mixture of probiotics significantly 
reduced symptom scores and fecal histamine levels after challenge as 
well as serum shrimp-specific IgE levels. IL-4, IL-5, and IL-13 levels 
in the jejunum were significantly reduced, whereas FOXP3 and IL27 
mRNA expression and IL-10, TGF-β, and IFN-β tissue content were 
increased. However, animal studies on the effect of maternal exposure 
to probiotics in the offspring are lacking, so further investigation is 
needed in this field.

Publication Target Omega 3 supplementation
Intake (from/until)

Study Findings & Summary

Dunstan et al.  [54] pregnant women with family history 
of allergic disease

Fish oil (3.7 g/d n-3 PUFA)
20 w gestation/ until birth

RDBPC Infants were less likely to have a positive skin prick test to egg  
vs placebo (OR 0,34) at 1 y

Lauritzen et al. [55] Pregnant women with a fish intake 
below the population median

Fish oil (1.5 g/d of n-3 PUFA)
4 mon of lactation

RDBPC No difference in atopic disease and plasma IgE between 
active and placebo groups

Furuhjelm et al.
(2009) [56]

(2011) [57]

pregnant women
with either personal or family history 
of allergic disease

1.6 g eicosapentaenoic ac.+1.1 g 
docosahexaenoic ac./daily.
25 w gestation/3-4 m postnatally

RDBPC No effect on the prevalence of clinical symptoms of allergic 
disease, but a decrease in cumulative incidence of IgE-
associated disease during the 1st y.
Decrease in cumulative incidence of IgE-associated disease 
still remained until 2 y of age

Palmer et al. [58] pregnant women
with family history of allergic disease

fish oil (900 mg/d n-3 PUFA) 
21 w gestation/ until birth

RDBPC No differences in the overall percentage of infants with Ig E 
associated food allergy versus placebo.

Table 2: Clinical trials assessing the preventive effect of n-3 PUFA supplementation during pregnancy in food allergy in infants at high risk of atopy [53].
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Clinical studies

A recent meta-analysis on the impact of probiotics intake during 
pregnancy on development of eczema in children [77] concluded that 
administration of lactobacilli, but not a mixture of various bacterial 
strains, during pregnancy prevents atopic eczema in children aged 2 
to 7 years. So far, studies on the preventive effect of probiotic intake 
during pregnancy/lactation on allergic diseases have not been designed 
to specifically asses their effect on FA. However, some of them have 
looked at surrogate markers of FA as secondary outcomes, and their 
results are summarized in table 3. 

In 2009 Niers et al. [78], conducted a double-blind, randomized, 
placebo-controlled (RDBPC) trial aimed to study the primary 
prevention of allergic disease in high-risk children by pre- and 
postnatal supplementation with probiotics. A mixture of three probiotic 
bacteria (Bifidobacteriumbifidum, B. lactis, and Lactococcuslactis) was 
administered to pregnant mothers during the last 6 weeks of pregnancy 
and postnatally for 12 months to their offspring. No difference in food 
allergen sensitization (measured by serum specific IgE (sIgE)) was 
observed between active and placebo group at 1 and 2 years of age. This 
lack of effect on FA prevention was also observed by Kim et al. [79] in a 
RDBPC trial using a combination of three probiotics (Bifidobacterium 
bifidum, B. lactis and Lactobacillus acidophilus) starting at 4–8 weeks 
before delivery and continuing for 6 months. The same results were 
also reported with a probiotic mixture of three strains (Lactobacillus 
rhamnosus GG, L. acidophilus and Bifidobacterium animalis) given to a 
nonselected maternal population [80].

When administering only one strain of Lactobacillus (Lactobacillus 
GG) to pregnant women carrying infants at high risk of atopy, from 36 
weeks of gestation until delivery, Boyle et al. [81] found no difference 
in sensitization to egg or peanut (assessed by positive SPT) in children 
at 1 year between active and placebo groups. Consistently, a recent 
RDBPC trial using the same Lactobacillus GG single strain starting 
at the second trimester of pregnancy did not find differences in the 
incidence of sensitization to food allergens (sIgE) in the offspring of 
actively treated mothers compared to the placebo group [82]. 

In a randomized trial of 1223 high-risk families, pregnant 
mothers ingested a probiotic mixture of 4 strains (LGG, L. rhamnosus, 
Bifidobacterium breve and Propionibacterium freudenreichii) from 36 
weeks of gestation and their infants received the same probiotics for 
6 months [83]. The children were followed until age 5 years and no 
difference in the cumulative incidence of food allergy sensitization 

(assessed by either a positive SPT or serum sIgE) could be found 
between active and placebo groups. Moreover, there were no differences 
on serum food-specific IgA, IgG1 or IgG4 concentrations among 
placebo and active groups at 2 years of age [84,85]. 

It is important to note that while studies on the potential effect of 
maternal dietary supplement interventions with either vitamin D or 
PUFA are mainly observational, the studies on the effect of maternal 
supplementation with probiotics are randomized controlled trials. 
Although data point towards a lack of effect of probiotic maternal 
supplementation on childhood FA, when interpreting these studies, 
it has to be considered that the microorganisms used, doses, and 
durations of therapy are different. A recent study also showed that time 
of probiotic exposure is critical to reducing eczema, and that although 
eczema incidence was decreased sensitization to food allergens was 
not [86]. This finding appeared to be contradictory to Lack et al. [5], 
indicating that eczema in children is highly associated with food allergy. 
The discrepancy might be due to the current study did not evaluate the 
food induced clinical reactions by double blind placebo controlled 
challenges, since sensitization to food allergens as determined by skin 
testing or IgE is not necessarily diagnostic for true food allergy. More 
studies specifically aimed at determining a potential preventive role of 
probiotics on FA sensitization as well as clinical reactions are needed.

Chinese Herbs
Food allergy herbal formula-2

The Chinese herbal medicine FAHF-2 has attracted attention as an 
allergen non-specific therapy for food allergy [87] FAHF-2, a tablet form 
of a 9-herb extract (Prunus mume, Zanthoxylum schinifolium, Angelica 
sinensis, Zingiber officinalis, Cinnamomum cassiae, Phellodendron 
chinense, Coptis chinensis, Panax ginseng and Ganoderma Lucidum) 
has been shown to completely eliminate PN-induced anaphylaxis 
in murine food allergy models and has an excellent safety profile in 
humans [88,89]. Protection persists for up to 6 months following 
therapy in mice (half of the murine life span) and is associated with 
sustained reduction of serum PN-IgE levels. It also reduces the 
numbers of peripheral blood basophils and peritoneal mast cells and 
FcεRI, FcεRI γ mRNA subunit expression by mast cells and basophils, 
and T-cell proliferation as well as histamine release following food 
allergen challenge in a murine model of food allergies [90]. FAHF-2 
treatment protection is also associated with immunomodulatory effect 
on T and B cells [91]. To increase the potency and ease of clinical use, 

Publication Target Probiotic Intake (from/until) Study Findings and Summary
Kim et al. [79] pregnant women

with family history of allergic disease
Mixture of 2 strains
32 w.gestation/3m postnatally

RDBPC No difference in food sensitization or probable food allergy in 
treatment versus placebo groups after 1 year

Niers et al. [78] pregnant women
with family history of allergic disease

Mixure of 3 strains
34 w.gestation/ 12m postnatally

RDBPC No difference in food sensitization in treatment versus placebo 
after 1 & 2y.

Boyle et al. [81] pregnant women
with family history of allergic disease

Lactobacillus GG
36 w.gestation/until delivery

RDBPC No difference in food sensitization in treatment versus placebo 
after 1 year

Dotterud et al. [80] Nonselected maternal population Mixure of 3 strains
36th w.gestation/3m postnatally

RDPPC Reduced cumulative incidence of atopic dermatitis, but no effect 
on atopic sensitization

Kuitunen et al.
 (2009) [83] 

Kukkonen et al. 
(2011) [84]

Kuitunen et al. 
(2012) [85]

pregnant women
with family history of allergic disease

same cohort 

same cohort

Mixure of 4 strains
36 w.gestation/6m postnatally

RDPPC No difference in cumulative incidence of allergic diseases and 
IgE sensitization versus placebo at 5 y. 

No difference on serum food-specific IgA, IgG1 or IgG4 
concentrations versus placebo at age 2y

Increased IL-10 and decreased casein IgA Abs in breast milk 
from mothers treated with probiotic vs placebo. 

Ou et al. [82] pregnant women with personal history 
of allergic disease

Lactobacillus GG
24 w.gestation/until delivery

RDPPC Reduced severity of maternal allergic disease but not the 
incidence of childhood allergic disease.

Table 3: Clinical studies assessing the preventive effect of probiotic intake during pregnany/lactation in children’s food allergy [95].
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we recently developed a more concentrated version of FAHF-2 by 
butanol purification, named B-FAHF-2, which reduced daily doses by 
80% [92]. Given that concomitant egg and peanut sensitization is high 
(>70%) in infants [16] and we previously found in murine model that 
maternal peanut allergy significantly increased offspring susceptibility 
to PN sensitization [23], we asked whether maternal peanut allergy also 
increase susceptibility to egg sensitization and whether B-FAHF-2 can 
reduce this risk. To this end, female C3H/HeJ mice were sensitized with 
peanut and then treated with FAHF-2 or PBS (Sham). They were then 
mated with naive male mice. 5-week-old offspring were sensitized with 
egg white plus CT epicutaneously 3 times at weekly intervals. It was 
shown that offspring of PN allergic mothers receiving preconception 
sham treatment showed significantly higher egg specific IgE levels 
than in offspring of naïve mothers (p<0.05; Figure 2). Interestingly, 
offspring of B-FAHF-2 treated mothers showed marked and significant 
suppression of egg-specific IgE (p<0.05) than offspring of Sham treated 
mothers, and were essentially the same as in naïve offspring (Figure 
2). These data suggested that in addition to the potential of B-FAHF-2 
as a therapeutic botanical drug, it may also have a potential approach 
by preconception treatment to prevent maternal allergy mediated food 

allergy risk in offspring. More research is required to develop maternal 
preconception B-FAHF-2 treatment as safe and effective interventions 
to prevent offspring food allergy high risk.  

That such an approach is worth pursuing is shown by the finding 
in a murine model of asthma that treatment of asthmatic mothers with 
ASHMI (Anti-Asthma Herbal Medicine Intervention) prevent early 
onset of allergic airway inflammation and mucus cell development in 
offspring [93].

Clinical studies

Our recent phase-1 safety trial in 19 food-allergic subjects (12-45 
years old) demonstrated the safety and tolerability of FAHF-2, also 
showed that FAHF-2 increased IFN-γ and IL-10 and reduces IL-5 and 
IL-13 production by peripheral blood mononuclear cells from adults 
and children with food allergy in vitro [91]. In an extended phase 1 
study, 6 months of FAHF-2 was safe, well tolerated and associated 
with a significant reduction in basophil CD63 expression upon ex vivo 
stimulation and a trend for reduced numbers of basophils.

A multicenter double-blind placebo controlled phase II trial on 
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Figure 2:  Maternal allergenic food consumption for preventing food allergy in offspring.Transmission of maternal specific immunoglobulins by breast milk in two 
murine models of FA
A: Maternal peanut consumption provides protection in offspring against peanut sensitization [23]
Left: Experimental protocol of mothers’ and offsprings’ peanut (PN) sensitization. Female C3He/J mice were fed either with peanut and cholera toxin ig (PN+CT), 
peanut ig (PN) or cholera toxin alone (CT) for five weeks and, after mating with naïve males, during pregnancy and lactation. An unimmunized group was employed 
as a control.  5-week old offspring from all the 4 groups were sensitized with PN+CT i.g. weekly for 5 weeks followed by 2 boosting doses. Mothers were sacrificed 
at weaning and offspring at week 15 for analysis.
Right: Peanut-specific immunoglobulin levels in mouse milk: peanut-specific IgG2a (ng/mL), peanut-specific IgG1 (ng/mL) and peanut-specific IgA (ng/mL) 
measuredby antigen-specific ELISA. Data are expressed as means ± SEM of duplicates for each group (n=3–4) *P<0.05, ***P<0.001 vs Unimmunized. 
B: Transfer of specific immunoglobulin by breast milk leads to antigen-specific offspring protection from food allergy [26]
Left: Experimental protocol. Sensitized mice were exposed to 1% OVA in drinking water for 2 weeks immediately after delivery. Offspring were weaned at 4 weeks 
and 5-week-old offspring were used for the FA model.
Right: OVA-specific IgG1 and IgA levels in breast milk. OVA-specific IgG1 is only found in the breast milk from OVA-sensitized mothers, which implies that mother 
micesecrete IgG1 into their breastmilk. OVA-specific IgA is only found in the breastmilk from OVA-sensitized and OVA-exposed mothers. Data are shown as the 
means and individual data points. N.D.: not detectable. *P<0.05, **P<0.01, n=5–9.
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safety and efficacy of the treatment with FAHF-2 in patients (age 12-45 
y) allergic to peanut, tree nuts, sesame, fish, and/or shellfish, is currently 
ongoing (clinicaltrials.gov identifier: NCT00602160). As yet no clinical 
study of FAHF-2 or B-FAHF-2 as preventive approach for high-risk 
children has been conducted, and such studies should be encouraged 
given its high safety profile and immunomodulatory effects.

Methodological Limitations
Before concluding, the reader has to bear in mind that the results 

of the studies reviewed in the present article should be interpreted with 
caution due to their inherent limitations.

On one hand, animal models results cannot be directly extrapolated 
to humans but they are important to establish the mechanistic basis of 
interventions and to generate hypothesis that have to be validated in 
human clinical studies. On the other hand, designs of clinical studies on 
pregnant women are constraint by logical ethical limitations. Another 
major limitation of these studies is the phenotypic description of food 
allergy, most commonly diagnosed through a surrogate marker (such as 
skin prick test or serum sIgE) rather than using the gold standard food 
challenge method. In addition, dietary intake is usually determined 
by food frequency questionnaires that are subject to recall bias. Other 
limitations of these studies include selection bias and reverse causality 
[94]. For this reason, potential strategies to prevent food allergy in 
infants need to be tested in randomized controlled interventional 
studies. 

Conclusion
The prevalence of food allergy has increased over the past 10-

15 years and there is no indication that this trend will decrease. It is 
important to develop primary preventive approaches for prevention. 
The suggestion that there is a critical window for early life prevention 
has raised interest in the potential of dietary interventions for mothers of 
infants at high risk of atopy as an early food allergy prevention strategy. 
Several studies have provided evidence supporting early oral exposure 
as means of preventing development of food allergy, but the data are 
not consistent. There are limited intervention- based clinical studies 
of the relationship between maternal diet and offspring food allergy. 
Continued effort is required to overcome the many methodological 
challenges of maternal preventive studies and to make safe and effective 
dietary interventions an early preventive strategy for FA. Epigenetic 
alterations appear to cause, and may possibly prevent food allergy. 
Future strategies should focus on the creation of favorable epigenetic 
modifications in offspring of atopic and non-atopic mothers by dietary 
modification. Animal models that mimic IgE mediated food allergies 
with a fixed genetic background and controlled exposures are likely to 
remain a crucial component of future studies in this field by provide a 
rational for human clinical study design.
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