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Worldwide concern on the heavy dependence of fossil fuel has 
further accelerated the development of renewable biofuel. Besides the 
production of biodiesel, bioethanol, biomethane and biohydrogen 
from renewable sources, gamma-valerolactone (GVL) appeared as 
another potential green fuel that can be derived from biomass. GVL 
is a colorless liquid with chemical formula of C5H8O2 [1]. It is stable 
at normal condition, has high boiling point and low toxicity [2]. In 
addition, GVL also recognized as an excellent solvent in biomass 
conversion, in which it can enhances saccharification process by 
completely dissolving the biomass including lignin fraction [3]. 
Recently, GVL has been suggested as a potential liquid fuel due to its 
similar combustion energy to ethanol (29.7 MJ/kg). In fact, GVL can 
be further processed to produce other chemical compounds and fuel 
additive, such as butene, pentanoic acid, 2-methyltetrahydrofuran 
(MTHF), 1,4 pentanediol and 5-nanonene [2].

GVL can be derived from cellulose materials via four important 
steps (Figure 1): (1) hydrolysis of cellulose to glucose, (2) dehydration 
of glucose to hydroxymethylfurfural (HMF), (3) hydration of HMF to 
levulinic acid and, (4) hydrogenation of levulinic acid (LA) to GVL 
[2,4]. Current research on GVL is mainly focused on the screening of 
hydrogenation catalyst to convert LA to GVL, and it is reported that 
catalyst containing Ru exhibited the most promising results [5-7]. 
Development of heterogeneous catalyst for the hydrogenation reaction 
is the next effort to truly realize commercial-scale production of GVL. 
This is predominantly due to easy separation of the heterogeneous 
catalyst from GVL liquid phase and thus, promoting economical 
pathway to manufacture GVL [4]. 

Since lignocellulosic biomass is consisting of a major portion of 
cellulose and hemicellulose, it has been identified as the best feedstock 
for GVL production. In conjunction, oil palm biomass is one of the 
most abundant biomass available in South-East Asia, specifically in 
Malaysia, Indonesia and Thailand [8]. Apparently, palm oil contributed 
38.5 million tonnes or 25% share of the world’s oils and fats markets, 
which is the largest portion among other edible oil sources, such as 
soybean, rapeseed and sunflower [9]. However, the expansion of oil 
palm industries has further raised the concerns of environmentalist 
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and public due to the increasing generation of oil palm biomass and 
residues (e.g. empty fruit bunches, palm kernel shells, trunks, fronds 
and mesocarp fibers) [10]. It is projected that 21.6 tonnes of oil palm 
biomass can be generated annually per hectare of land or accounted for 
more than 100 million tonnes of biomass production globally [10]. For 
example, in Malaysia, the palm oil agriculture industry has contributed 
85.5% of the total biomass production in the country [11]. 

Oil palm biomass generally consisting of cellulose, hemicellulose 
and lignin, and compositions are depending on the plant species. 
Nevertheless, relative high composition of cellulose (30-38%) and 
hemicellulose (23-40%) in oil palm biomass has made it a feasible 
source of GVL production [10]. In these recent years, hydrolysis 
of oil palm biomass to glucose for bioethanol production has been 
extensively carried out. From a few recent studies, high glucose yield 
can be attained from oil palm biomass via different pre-treatment 
and hydrolysis methods, such as alkaline, acid and enzymatic [12-15]. 
Hence, further upgrading the glucose to LA and GVL is seems possible 
and therefore, intensifies the bio-refinery development of oil palm 
industry. 

In the near future, it is expected that GVL production from oil palm 
biomass will diversify the renewable biofuel markets, as well as creating 
a sustainable platform for wealth generation and environmental 
protection. However, more researches are still heavily required to 
identify the bottlenecks of GVL production from oil palm biomass and 
its techno-economic feasibility. This includes some technical issues 
that needed to be further addressed, such as recalcitrant effect of oil 
palm biomass that hinder the hydrolysis process, conversion efficiency 
of LA to GVL and potential recycling use of hydrogenation catalyst. 
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Figure 1: Production of GVL from cellulose material (modified from [2]).
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