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Abstract
Chemotaxis, the directional cell migration guided by chemoattractant gradients, plays essential roles in 

many physiological processes, such as recruitment of neutrophils to sites of inflammation. Neutrophils detect 
chemoattractants by G protein-coupled receptors (GPCRs). Chemoattractant stimuli activate multiple signaling 
pathways to regulate directional migration of neutrophils. Recently, we identified a novel GPCR-mediated PLCβγ/
PKCβ/PKD1 signaling axis that regulates cofilin activity through cofilin phosphatase slingshot 2 (SSH2) and remodels 
actin cytoskeleton during neutrophil chemotaxis. In the future, it will be important to understand how multiple signaling 
pathways are spatiotemporally regulated to precisely control the rapid remodeling of actin cytoskeleton in the leading 
front of chemotaxing neutrophils.
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Introduction
Many eukaryotic cells detect and migrate toward chemoattractants, 

a process known as chemotaxis. Chemotaxis plays important roles in 
many physiological processes, including recruitment of neutrophils 
to sites of inflammation, neuron pattering, and metastasis of cancer 
cells. Chemotaxing neutrophils display polarized morphology. The 
migrating cells extend their leading edges by assembling a force-
generating actin network beneath the plasma membrane. Actin also 
collaborates with myosin to retract the rear of migrating cells and 
prevent errant pseudopod extension. Over the last decade, multiple 
signaling pathways have been identified that control GPCR-mediated 
reorganization of actin cytoskeleton in directional cell migration. At 
the leading edge, signaling pathways activate the Arp2/3 complexes 
that initiate the formation of new branches of actin filaments. In 
neutrophils, chemokines detected by GPCRs regulate multiple 
signaling pathways to activate the Rho family of small GTPases (cdc42 
and Rac1/2) to promote the growth of actin filaments (F-actin) [1-7]. 
Depolymerization of F-actin is also essential for controlling F-actin 
dynamics during cell migration. The family of actin-depolymerizing 
factor (ADF)/cofilin proteins is comprised of cofilin-1 (a non-muscle 
type of cofilin), cofilin-2 (a muscle type of cofilin), and ADF (also 
known as destrin) in mammals [8]. They bind to both monomeric 
G-actin (globular actin) and F-actin and mediate the dynamic
reorganization of the actin cytoskeleton by stimulating the severance
and depolymerization of actin filaments [9]. Cofilin also contributes
to F-actin assembly by increasing the actin monomer concentration
for polymerization and consequently increasing the turnover rate of
actin filaments in cells [10]. Active cofilin severs actin filaments and
creates new barbed ends for actin polymerization [11]. Cofilin might
also increase new barbed ends by its intrinsic nucleation activity [12].
However, phosphorylation is the most important and best studied
mechanism of regulating cofilin activity. LIM kinases (LIMKs) and
testicular protein kinases (TESKs) phosphorylate cofilin to deactivate
it while slingshot proteins (SSHs) and chronophin dephosphorylate
p-cofilin to activate it [8]. In neutrophils, however, the mechanism by
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which GPCR signaling regulates cofilin activities and cofilin-mediated 
actin polymerization/de-polymerization has only recently begun to be 
revealed. 

PLC Activation in Response to Chemoattractant Stimuli 
in Neutrophils 

Phospholipase C (PLC) activation is an early event in the response 
to numerous extracellular stimuli. Upon activation, PLC produces 
two important second messengers: diacylglycerol (DAG) and IP3. 
Both DAG and IP3 play important roles in many signaling pathways, 
including the induction of calcium influx [13] and the activation of 
downstream effectors, such as protein kinase C (PKC) and protein 
kinase D (PKD) [14]. Alterations of PLC isozymes are associated with 
several diseases, such as dysfunction in innate and adaptive immunity 
[15,16], brain disorder [17], and cancers [18,19]. Mammalian 
neutrophils express PLCβ2, -β3, and -γ2 [20]. In murine neutrophils, 
chemoattractant stimulation robustly activates both PLCβ2 and PLCβ3 
[4]. However, the evidence for the roles of PLC signaling in neutrophil 
chemotaxis are contradictory. Murine neutrophils lacking both PLCβ2 
and PLCβ3 still chemotax fairly well [4]. Some leukocytes with a 
single PLCβ2 deficiency actually have enhanced chemotaxis ability 
[21]. These results led to the assumption that PLC signaling might 
not be required for neutrophil chemotaxis. However, a PLCβ/PI3Kγ/
GSK3 signaling pathway has been reported to regulate the activity of 
cofilin phosphatase SSH2 and neutrophil chemotaxis [22]. We recently 
showed that inhibition of PLC activity significantly reduces chemotaxis 
of human neutrophils, suggesting an essential role of PLC signaling in 
neutrophil chemotaxis [23]. In addition to PLCβ2/3, GPCRs mediate 
the membrane targeting and subsequent activation of PLCγ2 in a 
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PI3K-dependent manner [23], providing an explanation for the normal 
chemotaxing behaviors observed in murine neutrophils with a single 
or double PLCβ2/3 deficiency. In neutrophils, PLCβ/γ2 might also 
be activated by other mechanisms. It has been reported that PLCβ2/3 
and PLCγ2 are specifically activated by small GTPase Rac1 [24] and 
Rac2 [25,26], respectively. In neutrophils, chemoattractant stimulation 
triggers robust activation of Rac1 and Rac2 [6,27]. Rac1 specifically 
regulates the chemotaxis compass, while Rac2 mainly controls actin 
polymerization. The Rac1-mediated PLCβ2/3 and Rac2-mediated 
PLCγ2 activation adds another layer of complexity to the existing 
signaling networks of PLC and Rac signaling (Figure 1). 

PKC Isoforms Involved in Neutrophil Chemotaxis
PKC is an important effector of PLC signaling. Neutrophils express 

PKCα, ‑βΙ, ‑βII, and ‑δ  [28]. PKC isoforms share a similar overall 
structure, consisting of an NH2-terminal regulatory domain joined 
through a flexible linker to a conserved COOH-terminal catalytic 
domain that binds ATP and substrates [14]. Various stimuli activate 
all four PKC isoforms, and the activation of PKC is required for the 

assembly and activation of NADPH oxidase and oxidative burst 
[29-31]. PKC isoform-specific functions in neutrophil chemotaxis 
have been revealed only in recent years. Both PKC‑α and ‑β are 
conventional PKCs that translocate and are subsequently activated in 
a PLC-dependent manner in neutrophils [22,23]. However, PKCα and 
‑β interact with and activate different effectors to regulate neutrophil 
chemotaxis. GSK3, a substrate of PKCα, phosphorylates SSH2 and 
decreases its cofilin-phosphatase activity. In resting neutrophils, GSK 
is active and suppresses SSH2 activity to maintain cofilin in an inactive, 
phosphorylated state. Upon fMLP stimulation, PKCα phosphorylates 
GSK3 and inhibits its activity, consequently increasing SSH2 activity 
[22]. Recently, we showed that PKCβ plays an essential role in 
neutrophil chemotaxis [22]. We identified PKD1 as a PKCβ substrate 
that phosphorylates SSH2 and inhibits its phosphatase activity. PKCβII 
has also been found to specifically phosphorylate and activate AC9 to 
mediate the trailing edge contraction in chemotaxing neutrophils [31]. 
The membrane translocation and activation of PKCβII was decreased 
by inhibiting mTORC2 activity through Rictor knockdown. It is not 
clear whether Rictor knockdown affects PLC activation. However, 
mTOR-mediated membrane translocation and activation provides a 
DAG-independent mechanism of activating PKCβΙΙ. PKCδ is a novel 
PKC isoform that lacks the C2 domain [29]. PKCδ translocates to the 
plasma membrane through the binding of its C1a domain with DAG or 
phorbol esters [32] and is involved in the oxidative burst in neutrophils 
[33,34]. Recently, it has been reported that PKCδ is required for 
neutrophil transmigration mediated by IL‑1β and fMLP (integrin-
dependent), but not IL‑8 (integrin-independent), by regulating 
adherence of neutrophils [35]. However, the molecular mechanism 
of PKCδ’s function still remains unclear. The PKC isoform-specific 
function in neutrophil chemotaxis is still not fully understood. 

Cofilin Activation and its Regulation in Neutrophils
Cofilin activity is regulated mainly through phosphorylation: 

phosphorylation at Ser‑3 by LIMKs and TESKs deactivates cofilin, and 
dephosphorylation at this site by SSHs and chronophin reactivates 
it [8]. In neutrophils, chemoattractants induce a rapid and transient 
dephosphorylation of cofilin [36]. Chemoattractant-mediated 
dephosphorylation of cofilin at Ser3 is required to initiate actin-
mediated chemotaxis in leukocytes [6,37]. Recently, it has been shown 
that the chemoattractant-mediated PLCβ/PI3Kγ‑GSK3 pathway 
relieves phosphorylation and inhibition of cofilin phosphatase SSH2, 
and hence reduces the level of p‑cofilin in neutrophils (Tang et al., 2011). 
Compared to the ubiquitous expression of SSH1 in many tissues, SSH2 
is the major isoform expressed in mammalian neutrophils [22,23]. 
SSH2 efficiently dephosphorylates p‑cofilin [22,23,38]. Hirayama 
and his coworkers used HL60 cells to study the cofilin activation 
cycle and demonstrated a clear activation cycle [39]. The activation 
cycle of cofilin is especially important at the leading front, where 
rapid polymerization and depolymerization of F‑actin cytoskeleton 
are required. We discovered a GPCR-mediated PLCβγ/PKCβ/PKD 
signaling pathway that increases the level of p‑cofilin to complete 
the cycle of cofilin activation in neutrophils [23]. PKD is a family of 
serine/threonine kinases that is highly expressed in neutrophils [28]. 
We found that chemo attractant stimuli trigger robust membrane 
translocation and activation of all three PKDs [23]. More importantly, 
PKD is essential for neutrophil chemotaxis. The membrane targeting of 
PKD1 requires DAG, the product of PLC activation. DAG also recruits 
PKCβ which phosphorylates Ser‑744/Ser‑748 in the PKD1 activation 
loop to activate it. Lastly, we discovered that active PKD interacts with 
and phosphorylates SSH2 to decrease its activity, leading to an increase 
in the level of p‑cofilin to complete the cofilin activation cycle. In 

Figure 1: Scheme shows the signaling pathways in which PKD1 
phosphorylates cofilin phosphatase SSH2 to regulate cofilin activity in GPCR-
mediated chemotaxis of neutrophils.”
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conclusion, GPCR activation triggers two pathways to control the cycle 
of cofilin activity, which is essential for a rapid and coordinated cycling 
of F‑actin polymerization and depolymerization at the leading edge of 
chemotaxing cells (Figure 1). 

Future Perspectives
It will be important to dissect the spatiotemporal activation 

mechanism of PLC isoforms in neutrophils and its subsequent effects on 
neutrophil chemotaxis. Moreover, the signaling pathways and kinases 
that phosphorylate cofilin are still not fully understood in neutrophils. 
Above all, it will be particularly important to understand how tempo-
spatially distinctive signaling pathways control the rapid and precisely 
coordinated remodeling of actin cytoskeleton in the leading front of 
chemotaxing neutrophils. A live probe to visualize cofilin activity in 
migrating cells is urgently needed.

Conclusion
Chemoattractants trigger diverse signaling pathways to mediate 

cell migration. It is particularly important to understand how 
spatiotemporally distinctive activations of signaling pathways control 
the rapid and precisely coordinated remodeling of actin cytoskeleton in 
chemotaxing neutrophils. GPCR-mediated PLC activation induces two 
distinctive signaling pathways to achieve fast cycling between active 
and inactive cofilin in the leading front of chemotaxing neutrophils. 
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