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ABSTRACT

Patient-specific, personalized medicine is evidently required to administer optimized therapeutics and prevent
treatmentrelated mortality. In order to develop a predictive model for breast cancer therapy, the following study
analyzed the mRNA data of 4,704 genes derived from 20 breast cancer patients before and after doxorubicin
treatment for 16 weeks. The genomic dataof each patient was first stratified into 9 groups based on mRNA expression
in response to the tumor and to the doxorubicin treatment. The study then employed the Planckian Distribution
Equation (PDE) discovered at Rutgers University to model the stratified samples by transformingeach mechanism
into a single long-tailed histogram fitted by the PDE. PDE is a novel algorithm used to linearly map long-tailed
histograms onto a given category of functions on the Planckian Plane. Our PDE model is based on 3 parameters - A,
B, and C - of which 2 were extracted from each model to generate the plots. The drug-induced slopes of the A vs. C
plots were then determined for all 9 mechanisms of each patient. The study observed an increase in post-treatment
mRNA levels for longer surviving patients in 6 distinct groups of genes. Further analysis displayed how the drug
treatment uniquely altered each of the 9 mechanismsbased on the length of patient survival. These results indicate
that the PDE-based proceduresdescribed herein may provide a novel tool for discovering potential anti-breast cancer

pharmaceuticals.
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INTRODUCTION

Despite advancements in treatment, breast carcinoma has
remained an extremely fatal malignancy, killing an estimated
42,170 females in the United States in 2019, the second most of
any cancer [1]. Clinical studies have estimated that nearly 7.5% of
all cancer deaths are caused by chemotherapy ~ over-treatment with
faulty medications [2]. A dire need for advanced research into pre-
determining the effectiveness of breast cancer pharmacotherapy
exists, with the livelihood of millions of women at stake. The
following paper provides a novel method for predicting the
clinical success of anti-breast cancer drugs based on the Planckian
Distribution Equation (PDE).

In 2000, Perou et al. at Stanford University measured the RNA
levels of 8,102 genes in breast cancer tissues biopsied from patients
before and after 16-week doxorubicin treatment using Microarray
techniques [3]. All genes whose RNA data were not complete were
removed, leaving a total 4,740 select open reading frames (ORFs)
per patient. From each patient,two groups of data were designated
as AT and AD, depending on the magnitude of RNA changesare

due to tumor (T) or due to drug (D) treatment respectively. The
pair of AT and AD values were converted into an angle using the
formula a=arctan (AD/AT), which creates the following 9 classes
- mechanisms - of angles: 1(-22.5 - 22.5), 2(22.6 - 67.5), 3(67.6 -
112.5), etc. Our study then analyzed each mRNA mechanism to
determine if a significant difference existed between long-surviving
and short-surviving patients.

The results detected a statistically greater change in the slope of the
A vs. C plots of PDE,in which the x coordinates represent log (A
x 10%) and the y coordinate represents the C parameter, for long
surviving patients compared to short surviving patients. These
results indicate that doxorubicin-induced changes were greater
among long surviving patients than short surviving patients. Since
the analysis is based on individual patient data, these novel results,
if mimicked by other anti-cancer therapy candidates, can be utilized
to discover the most effectivecancer pharmaceuticals for treating
individual patients. The following section details the microarray
data collection methodology for each breast cancer patient. It then
outlines the theoretical background of the Planckian distribution
equation algorithm and its application to cancer pharmacotherapy.
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The application of the PDE is then described more specifically for
ourbreast cancer transcriptome.

MATERIALS AND METHODS

The project was conducted completely virtually, with the
aforementioned microarray datacollection having been included
[3]. All statistical methods and algorithms were employed via
machine learning tools such as Microsoft Excel.

Microarray data collection and analysis

DNA Microarray data collection is among the most significant tools
utilized for thorough understanding of functional genomics [4].
This study equipped advanced use of microarray analysis to extract
key data from biopsied tumor tissue before and after doxorubicin
treatment.

Micoarray experimentation occurs as a result of excess cellular
mRNA degradation and transcription. Expressed genes are
transcribed into mRNA, which are isolated and converted
into complementary strands of cDNA via the enzyme reverse
transcriptase. Figure 1 displays how the mRNA levels inside the
cell are affected by the two opposing processes - (i) Increases in the
rate of transcription of mRNA to cDNA catalyzed by transcriptome
and (ii) Transcript degradation of excess mRNA catalyzed by
degradosome. The microarray experiments involved the following 6
key steps to effectively measure mRNA levels within cells: (1) Isolate
RNAs from broken cells. (2) Synthesize fluorescently labeled cDNA
from isolated RNAs using reverse transcriptase and appropriately
fluorescently labeled nucleotides. (3) Prepare a microarray either
with EST (expressed sequence tag, i.e., sequences several hundred
nucleotides long that are complementary to the stretches of the
genome encoding RNASs) or oligonucleotides (synthesized right on
the microarray surface). (4) Pour the fluorescently labeled cDNA
preparation over the microarray surface to effect hybridization
and wash off excess debris. (5) Measure the light intensity of
fluorescently labeled cDNA bound to the microarray surface using
a computer-assisted microscope. (6) Display the final result as a table
of numbers, each registering the fluorescent intensity of a square
on the microarray which is proportional to the concentration of
cDNA (and ultimately to the RNA levels in cells before isolation)
located at row x and column y, rows indicating the identity of genes,
and y the time or the conditions under which the RNA levels are
measured [5,6].

From each patient, the molecular data from 4 distinct tissue and
cell types were generatedas shown in Figures 2 and 3. Treatment
groups’ normal tissue (N), before treatment (BE), and after
treatment (AF) generated the molecular data (in the form of the
mechanism tables seen in Figure 4 for the study into theranostics
and personalized therapy) [7]. Microarray analysis was then used
to measure RNA sequences and differential expression patterns
among data groups - a process collectively known as ribonoscopy
[8] (Table 1). The tumor samples were used to measure RNA levels
encoded by a total of 8,102 genes, of which 4,740 genes and their
transcripts have been analyzed here. Table 2 displays a partial list of
the microarray data measured from the normal breast cancer cell
culture (N) and the breast cancer tissues of patients #7, #27, and
#39measured before (BE) and after (AF) doxorubicin treatment for
16 weeks.

The mRNA changes were then classified into 9 distinct groups
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The figure displays the process by which mRNA molecules are degraded to nucleotides for
recycling. Two routes by which mRNA levels can be affected are (i) Changes in the rate of
transcription of DNA to mRNA by transcriptosome, and (ii) Changes in rate of degradation of
mRNA into nucleotide by degradosome.

(Source: Kim, Chaewon Breast Cancer and PDE, 2018).

Figure 1: The conversion of DNA to mRNA and protein via the enzyme
transcriptase and ribosomes.
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data (in the form of mechanism tables) for theragnostics. while N, BE, and AF" are needed 1o generate
the molecular data for personalized therapy. The tumor samples obtained from 65 surgical specimens
of human breast cancer and microarrays were used to measure the RNA levels encoded by 8,102
genes, of which 4,740 genes and their transcripts have been analyzed in this poster. (Ji, [14])

Figure 2: The four types of tissue or cells that are required to generate
molecular data e.g. RNA sequences and differential expression patterns
measured with microarrays or equivalent next generation sequencing
techniques (Ribonoscopy).

based on the magnitude ofeach change due to tumor (AT) and
due to drug treatment (AD=AF - BE). These groups were generated
based on a unit circle angle measure, where angle [°=arctan (AD/
AT) (Figure 4a).Figure 4b displays the classification method for
mechanisms 1-8 based on the a values (0° - 22.5°, 22.5° - 45°, 45°
to 67.5°% etc.). Mechanism 9 is classified as the range of angles
excluding those lying outside the mean +/- 2 standard deviations
(a = +/- 5%) for each other mechanism. By developing this angle
that compares expression before and after treatment, the study
was ableto generate a single value that specifically illustrates the
effectiveness of the treatment on each ORF. These 9 mechanisms
provide key insights into the relationship between pretreatment
tumor mRNA change and post-doxorubicin treatment change,
allowing us to categorize the drug-induced changes in the tumor
tissue.

The results of the microarray analysis are displayed in a tabular form
exemplified by Table 1, in which N=The number of patients; n=The
number of ORF (Open-reading frames of single genes), SM=Patient
survival period in months, N=Normal tissue biopsies, BE=Pre-drug
treated tissue, AF=post-drug treated tissue, and M=The mechanism
number as defined in Figure 4. Figure 3 displays an extracted
portion of the mechanism summary table, which quantified each
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Figure 3: Mechanism-based table for each of 20 doxorubicin-induced breast cancer patients by open reading frame (ORF).

a)

Mechanis | Angle (o) from the Effects on RNA levels

m mechanism circle (°) due to

Ember Tumor Drug

(AT) (AD)

1 225~225 + 0

2 226 ~ 67.5 + +

3 67.6 ~ 1125 0 +

4 112.6 ~ 157.5 ; +

5 157.6 ~202.5 - 0

Mechanism Circle 6 202.6~249.5

7 249.6 ~292.5 0

8 292.6 ~-22.5 +

9 Defined as the mean +/- 5% ofthe | 0 0
range of angles excluding those
lying outside of the mean +/- 2 ¢’s.

AT = Change in RNA levels due to tumor, i.e., BE-N in Panel a) A; AD = Change in RNAlevels in tumor
tissues due to drug treatment, i.e., A - BE. The angle o was measured counterclockwise starting from the
positive x-axis as o, = arctan (AD/ AT). Each of the 9 mechanisms is defined in terms of the range of the
associated a values as indicated in Panelb). The angle for Mechanism 9 cannot be so calculated.

Figure 4: The mechanism circle.
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Table 1: The structure of the microarray data measured from 20 breast cancer patients before (BE) and after (AF) treatment with doxorubicin for 16
weeks. ORF=Open Reading Frame; N = Normal human breast tissue; BE=Before Treatment; AF=After Treatment; M=Mechanism. N=The number of

ORF analyzed; N=The number of patients.

Patient 1 Patient 2 Patient N
ORE N BE AF M N BE AF M N BE AF M
1 2 1 6
2 3 6 2
3 8 5 7
4 1 4 9
n 5 6 1

OREF in each of the 20 patients as one of the 9 mechanisms. The
microarray analysis provided a thorough method to classify each of
20 doxorubicin-treated breast cancer patients by genome, allowing
us to create a patient-specific methodology for treatment efficacy.

Planckian Distribution Equation (PDE)-based analysis of mRNA
data

Derived from the planckshannon classifier in 2008, PDE is an
algorithm that can map three or more sets of long-tailed histograms
(LAH’s) into one or more categories of functions, each category
exhibiting a linearly correlated line on the Planckian plane [9]. PDE
is based on Planck's equation for the wavelength and intensity of
blackbody radiation (Figure 5a) and has proven to be a successful,
novel quantitative method to determine potential drug targets [10].
Its use in making statistically valid scientific inferences within medical
applications has been widely studied and verified in the past [11].

PDE’s (Figure 5b) derivation from the blackbody radiation-like
equation replaces theuniversal constants and temperature with free
parameters, A, B and C, resulting in the algorithm y = (A/(x + By’ )/
(e¥&*® _ 1), where x is unspecified and y represents the cellular wave-
frequency. Within PDE, the transformed a-parameter represents
the number of standing waves per unit frequency per unit volume
of the cell, while the c-parameter indicates the averageenergy of each
wave [12]. PDE can also be derived from the Gaussian-like equation
(GLE),y = Ae-(xp)?/2I* (where A is a parameter unrelated to A
appearing in PDE), by non-linearly transforming its independent
variable, x, and keeping the dependent variable y constant [10]. The
possible reasons for the universality of PDE (i.e., PDE fits almost
any long-tailedhistograms generated in almost all fields of inquiry)
include:

(i) The universality of the wave-particle duality,

(ii) Selection of subsets of random processes as the basic
mechanism of generating order, organization, and structure
in the Universe, and (iii) the Planckian process as active
symmetry-breaking process driving the self-organization of
the Universe [13,14]. In PDE (Figure 1b), the first term is
known (in analogy to the blackbody radiation equation)
to be related to the number of vibrational modes per unit
frequency of volume and thesecond term is known to be
related to the average energy of each mode, [15]. PDE has
been found to fit a widerange of longtailed histograms
within biochemistry, such as that seen inPanels c¢) and d) in
Figure 5. By having flexible parametric values A, B, and C,
single point residual values of the PDE curve relative to the
experimental curve can be easily decreased to allow PDE to
better fit the curve.
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PDE has been proven to be biologically viable in differentiating
between sequential genomic data within breast cancer patients
and placebos in the past, but this study represents its first use
on a complete transcriptome to predict the efficacy of treatment
[16]. Our study equipped PDE by first compiling the data of the
20 breast cancer patients into a single location, specifically listing
the cellular mRNA levels of each of 4,704 genes pre and post-
doxorubicin treatment and the associated treatment mechanism
(see above) of each open reading frame (ORF). We then studied
the ORFs for each mechanism of each patient by first dividing
the overall mRNA transcriptome into 10 individual datasets split
between 5 short-surviving (patientssurviving under 10 months) and
5 long-surviving (patients surviving greater than 75 months).

Histograms were developed for each dataset of each patient (each
representing one of 9 studied mechanisms for the selected patient)
using a bin range of 0-5.0 at intervals of 0.1 to include all data
within 3 standard deviations (o) of the respective mean (u). The bin
range and intervals were chosen based on prior PDE-analysis from
[8,9]. For each histogram, the x-axis represents the bin number and
the y-axis represents the mRNA levels within a given bin range.
The experimental curve for the 9 mechanisms of each patient for
the before data was fitted by the PDE until all residual values were
minimized. PDE was implemented in single steps for eachterm
of the algorithm (A, B, and C) and then combined, to minimize
errors within the study. Thesingle steps were then combined, and
the residual sum of squares (RSS) between the PDE value and
experimental function value for each ORF was calculated. Solver
Software was then used to minimize this value, thereby accurately
fitting the PDE curve to the experimentally generatedcurve. Figure
5d displays the results of fitting mRNA histogram to the PDE
curve for beforedata of a short surviving patient - Patient 12 - over
100 ORF’s. Similar histogramical PDE analysis was conducted
for the after (AF) doxorubicin mRNAdata in relation to specific
mechanisms. After fitting the PDE to each mechanism for each
patient, A and C data pairs were compiled for both the before
and after data. The parameter A values were then transformed to
their logarithms in order to represent them on the same scale as C,
which is defined as an exponential term in PDE. Thus, a given (A,
C) pair was converted to an equivalent (log (A),C) pair.

The (A,C) points for the 5 shortsurviving points and the 5 long-
surviving points for each mechanism were utilized to create 20
linear regression models, inclusive of both before andafter data.
Examples of a single model for each before and after dataset are
shown in Figures 5e and 5f. Change in slope was then calculated
for each linear regression model (AM=mAF-mBE), and a final plot
was developed where the x-coordinates represented the mechanism
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b)

Planckian Distribution Equation (PDE):

y =A/(x+B)¥(e*P 1)

c) Single-molecule cholesterol oxidase turnover time
histogram fit to the Planckian distribution
A=15x10" B =24, C=309.7, RMSD = 14.80 by Solver
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Figure 5: The origin and applications of the Planckian Distribution Equation (PDE).

Panel a) Planck’s blackbody equation developed for quantum mechanics and wavelength/frequency/energy comparison.

Panel b) Planckian Distribution Equation (also called Blackbody Radiation-like Equation, BRE) was derived from the Planck’s radiation formula (PRF)
by replacing the universal constants and temperature in PRF with free parameters, A, B and C (O’Brien et al., 2006). The interpretation of the two
terms given above is adopted from the interpretation of the similar terms in Planck’s blackbody radiation equation (see a))

Panel c) Example use of PDE to fit to experimental data represented as a long-tailed histogram.; visual interpretation shows theoretical curve mimicking
the experimental curve in extremely similar fashion.

Panel d) Example use of PDE to fit experimental breast cancer data of 67 open reading frames; panel displays relative A, B, C values from the PDE
curve implemented within the algorithm to fit experimental data.

Panel e) (A, C) plot for mechanism 6 short patients with use of the before data; analysis is conducted for 100 open reading frames of the transcriptome

Panel ) (A’, C) plot for mechanism 6 short patients with use of the after data; analysis is conducted for 100 open reading frames of the transcriptome
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value and the Y coordinates displayed the AM value for said
mechanism. These drug-induced AM generated 2 values for each
mechanism: one representing the drug-induced change for long-
surviving patients and one representing the drug-induced change
for shortsurvivingpatients.

OPEN aACCESS Freely available online

RESULTS AND DISCUSSION

The log A vs. C plots for each of the 9 mechanisms long-surviving
and shortsurviving before and after drug treatment produced the
results summarized in Table 3. As shown in column 4, each plot

Table 2: A partial list of the original microarray data measured from normal breast tissues (N) and breastcancer patients #7, #27 and #39 before (BE) and

after (AF) treated with doxorubicin for 16 weeks.

ORF Normall Normal2 Normal3  Avg(N) 7-Before 7-AF 27-BE 27-AF 39-BE 39-AF
ACACB 0.568 4.493 4.79 3.284 0.851 5.413 1.131 1.044 0.881 1.107
ACTC 1.441 1.036 0.417 0.964 0.762 0.936 0.583 0.585 0.774 0.65
ATF2 0.8 1.131 0.566 0.832 0.62 0.66 0.579 0.691 0.908 0.69
LOC51576 0.805 0.792 0.549 0.715 1.04 1.175 0.752 0.775 1.089 0.851
ALB 1.244 1.149 0.868 1.087 0.382 1.121 1.182 1.354 1.615 1.043
AKR7A2 0.871 0.963 0.9 0.911 0.911 0.823 4.347 4.806 0.604 0.631
ALPP 1.514 0.92 0.82 1.084 0.731 3.134 0.844 0.95 1.329 2.136
AMMECRI1 0.961 1.286 0.446 0.898 0.478 0.575 0.525 0.593 0.607 0.832
ABP/ZF 1.576 3.142 2.152 4.29 0.59 2.988 0.71 0.887 5.116 2.066
AS3 1.007 1.002 0.728 0.912 0.85 0.927 1.674 1.864 1.261 0.733
ANK3 2.213 1.653 0.482 1.449 2.216 091 0.193 0.211 4.068 2.173
ANK3 1.889 1.902 0.811 1.534 2.233 2.01 0.149 0.216 3.888 2.834
AHR 0.605 0.642 0.815 0.688 0.998 1.475 0.288 0.446 1.165 0.975
ATP6A1 0.849 0.803 0.57 0.741 0.918 1.295 1.719 2.04 0.873 0.575
ABCF3 1.08 1.01 2.392 1.494 2.284 1.358 1.168 1.324 0.998 1.163
BAGE 0.763 0.628 1.195 0.862 0.765 0.831 0.864 0.878 0.831 1.03
BZRP 1.529 1.374 1.848 1.584 1.915 2.486 1.89 1.177 2.325 1.998
BLVRB 1.722 1.791 3.63 2.381 0.383 1.431 0.467 0.42 1.46 2.498
CAMK2G 0.729 0.822 0.699 0.75 0.748 0.853 1.666 1.552 0.838 0.667
CANX 1.059 1.006 0.451 0.839 0.916 0.891 0.536 0.64 0.492 0.521
CRTAP 1.185 1.591 1.347 1.374 0.773 1.386 0.531 0.732 0.759 1.243
CTNNA1 0.476 0.497 0.385 0.453 0.804 0.926 0.643 0.644 0.687 0.61
LOC56996 0.928 0.991 0.528 0.815 0.834 0.595 1.514 1.663 0.768 1.644
CITED1 2.018 2.925 3.103 2.682 0.774 1.576 0.823 0.52 0.833 1.795
CIDEB 2.261 1.106 1.384 1.584 3.789 4.753 1.677 1.613 1.968 4.076
CENPE 0.976 0.744 0.602 0.774 1.143 1.405 0.858 0.89 1.019 0.707
CGI1-204 0.491 0.376 0.366 0.411 1.108 2.123 0.714 0.893 0.734 1.181
LOC51622 2.711 1.22 2.863 2.265 3.654 2.073 2.676 1.844 2.075 3.663
LOC51622 0.512 0.698 0.515 0.575 0.919 0.954 0.891 1.134 0.548 0.309
CHRNE 1.414 1.288 1.303 1.335 1.432 0.249 1.388 1.303 2.072 1.104
CHP1 0.716 0.555 0.257 0.509 0.474 0.341 0.657 0.582 0.965 0.471
C210RF56 1.248 1.538 1.429 1.405 0.92 1.412 0.889 1.185 1.258 1.305
ORF1 0.343 0.505 1.243 0.697 1.283 3.02 0.628 1.121 0.041 0.969
CYp 0.19 0.346 0.1 0.212 0.757 0.957 0.384 0.43 0.907 0.566
CLU 1.939 2.154 1.097 1.73 0.8717 0.719 1.758 1.765 1.028 0.868
CLU 5.682 3.616 2.835 4.044 1.671 2.423 5.532 9.168 2.453 2.079
CLU 2.53 2.017 1.405 1.984 1.275 1.462 2.301 3.264 1.617 1.302
MYCBP 0.617 0.68 0.487 0.595 2.523 1.612 1.183 1.224 0.718 0.454
COPB2 0.255 0.275 0.294 0.275 0.604 0.312 0.534 0.616 0.5 0.351
CFL1 1.257 0.522 1.311 1.03 1.992 4.343 1.993 6.79 3.245 2.136
COLIALI 1.08 1.006 0.246 0.777 0.981 2.42 0.98 1.104 1.325 0.871
COLI11A1 0.392 0.401 1.179 0.657 3.282 34.87 7129 4.118 24.562 31.278
CINH 1.057 0.829 0.607 0.831 0.707 1.206 1.039 0.865 1.098 1.31
CIGALT1 1.028 1.112 0.863 1.001 1.283 1.025 0.802 0.739 0.93 1.123
COX11 0.639 0.719 0.506 0.621 0.825 0.618 1.494 1.601 0.5 0.408
CRBI1 1.4 0.819 0.96 1.06 1.071 4.684 1.261 1.512 2.654 1.651
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Table 3: Drug-induced changes in the slopes of the Log (A) vs C plots of the human breast cancer RNAlevels exhibiting Mechanisms 1, 2, 3, 4, 5, 6, 7, 8,
or 9. A and C are two of the three parameters of Planckian Distribution Equation (PDE), y = (A/ (x + B) 5)/ (e~ **P - 1).

Mechanisms Longevity ASlope R2 ASlope = SlopeAF - SlopeBE ASlope = ASlopeLong - ASlopeShort

Short AF 1.0354 0.986 0.1136
Short BE 1.149 0.984

1 0.011
Long AF 0.8933 0.989 -0.1026
Long BE 0.9959 0.996
Short AF 1.0028 0.908 0.1304
Short BE 0.8724 0.973

2 0.2404
Long AF 1.2181 0.97 0.3708
Long BE 0.8473 0.947
Short AF 1.0424 0.963 0.3982
Short BE 0.6442 0.981

3 0.2042
Long AF 1.3782 0.992 0.6024
Long BE 0.7758 0.972
Short AF 0.7842 0.997 0.323
Short BE 0.4612 0.996

4 0.1091
Long AF 0.8815 0.996 0.4321
Long BE 0.4494 0.982
Short AF 0.5625 0.994 0.0032
Short BE 0.5593 0.997

5 -0.0487
Long AF 0.415 0.99 -0.0455
Long BE 0.4605 0.992
Short AF 0.495 0.983 -0.2904
Short BE 0.7854 0.9564

6 0.0655
Long AF 0.5265 0.9855 -0.2239
Long BE 0.7504 0.9317
Short AF 0.6283 0.9267 -0.1935
Short BE 0.8218 0.64

7 -0.1378
Long AF 1.183 0.978 0.3673
Long BE 1.5503 0.773
Short AF 0.7401 0.9943 -0.4114
Short BE 1.1515 0.972

8 0.0288
Long AF 0.6245 0.9915 -0.3826
Long BE 1.0071 0.982
Short AF 0.7638 0.99 -0.0009
Short BE 0.7647 0.978

9 -0.1007
Long AF 0.6631 0.904 -0.1016
Long BE 0.76417 0.978

displayed a statistically significant relationship between the two
variables (R?>0.700). The results for the change in slope of the plots
for each mechanism is defined by a single value in Table 3 (column
6), which displays the difference in drug-induced mRNA change
between long and short surviving patients.

Table 3 indicates that the average standing energy of a standing
cellular wave is greater among longsurviving patients than
shortsurviving patients in mechanisms 1, 2, 3, 4, 6, and 8 post-

J Biol Res Ther, Vol. 10 Iss. 3 No: 192

treatment. Excluded mechanisms 5 and 9 represent a decrease in
tumor mRNA levels with no drug-induced mRNA change and
no significant change in mRNA expression, respectively. Since
neither displays a conclusive relationship about drug-induced
change, mechanisms 5 and 9are biochemically insignificant for
patient treatment. Hence, the study can conclude that doxorubicin-
induced slope changes were significantly greater among long
surviving breast cancer patients than shortsurviving breast cancer



Rajan S

patients for each remaining mechanism. A finalplot seen in Figure
6 summarizes the results of the present study. Mechanism values
1-9 are ordered on the x-axes and drug-induced changes in slope
between long-surviving and shortsurviving patients are presented
on the y-axes. The results display a wave-like distribution for slope
changes as a function of each mechanism, which can be used as
evidence for the anti-cancer efficacy of other drug candidates. This
procedure is described in more detail in Table4, which displays
the process by which treatment longevity can be predicted. Studies
should biopsy breast cancer tissue before drug treatment, and
then cell culture said tissue in the presence andabsence of the
drug candidate to generate the AF and BE data. Analysis should
then be conducted as illustrated in this paper by (1) measuring the
genomic mRNA levels in BE and AF tissue samples with genome-
wide cDNA microarrays, (2) determining the values of the A and
C parameters, and (3) plotting log A vs. C for both BE and AF
data. The drugrinduced changes in the slopes of the regression line
of log A vs. C plots must be computed for each mechanism and a
chart similar to that presented in Figure 7a must be developed. By
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visual examination of the curve distribution for the mechanism vs.
drug-induced slope change of long and short survivors plot, the
drug-candidate that best mimics doxorubicin and proves to be an
effective therapeutic can be identified. Algorithmic computation
can also be done by determining which therapeutic candidate best
mimics the doxorubicin plot via calculation of the residual (y?) for
each mechanism. The drug candidate that presents the lowest value
for the residual sum of squares (RSS) represents the most effective
anticancer therapeutic. Figure 7b displays a hypothetical scenario
that predicts which of 5 drug candidates will prove most effective in
treating breast-cancer. The scenario displays use of both the method
of visual examination (Figure 7a) and the method of RSS numerical
comparison (Figure 7b). As presented in the results of the scenario,
use of either method yields the same result - hypothetical candidate
3 [12]. Through determining which drug most mimics the patient
survival-outcome of proven treatment Doxorubicin, the scenario
was potentially able to identify the most effective candidate.
Drug candidates that do not mimic Doxirubison’s behavior can
be interpreted to be suboptimal treatment methods since they

Drug-induced changes in the slope of the A vs. C plots of
Panckian Distribution Equation

Demaribidn

Figure 6: Complete chart displaying the difference in druginduced changes (Y-axis) in slope of the log A vs. C plots between long and short surviving

patients for each mechanism (X-axis).

Table 4: Procedures for obtaining mRNA data for PDE-based analysis to discover doxorubicin-ike drugsmimicking the wave-like curves depicted in Figure 6.

Biopsy the tumor and normal breast tissue before drug treatment

Cell culture the biopsied tissues in the presence (or AFter) or absence of (or BEfore) the anticancer drug

Measure the RNA levels in BE and AF tissue samples with genome-wide cDNA microarrays

Determine the A and C parameter values of the Planck Distribution Equation fitting the BE and AF data

Construct the log A vs. C plots

[ NS B O R S

Compute the drug-induced changes in the slopes of the regression lines of the log A vs. C plots

J Biol Res Ther, Vol. 10 Iss. 3 No: 192
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a) Drug-induced changes in the slope of the A vs. C plots of
Panckian Distribution Equation
o
0.3 — F
o1 b | w23 S 6 o i o 10
0.2 v el
03
o4
il O} concyrvi bidcin Candidate 1 Candidate 2
Candidate § e Candidate 4 5
b) Doxo-
Mech # rubicin | Drugl A*(1) Drug2 A*(2) Drug3 A*(3) Drug4 A*(4) Drug5 A*(5)
1 0.011 0.102 0.00828 -0.02 0.00096 0 0.00012 0.09 0.00624 -0.06 0.00504
2 0.2404 0.3 0.00355 0.15 0.15241 0.225 0.00023 -0.185 0.18096 0.21 0.00092
3 0.2042 0.24 0.00128 0.25 0.00209 0.211 0.00004 0.06 0.02079 0.21 0.00003
4 0.1091 0.1 0.04372 0.3 0.03644 0.12 0.00011 0.12 0.05248 0.03 0.00625
5 -0.0487 -0.06 0.00012 0.02 0.00471 -0.08 0.00097 0 0.00237 0.1 0.00263
6 0.0665 0.21 0.02059 0.4 0.11122 0.09 0.00055 0 0.00442 0.02 0.00216
7 0.1738 0.03 0.04153 0.2 0.13972 | -0.185 0.00012 0.225 0.15904 0.011 0.03415
0.0288 0.1 0.01658 0.3 0.10810 0.06 0.00097 0.211 0.03319 | 0.2404 | 0.04477
9 -0.1007 0.02 0.01456 0.2 0.00986 0.12 0.00037 0.12 0.04870 | 0.2042 | 0.09296
Sum of A? 0.15024 0.56555 0.00352 0.50822 0.18893
A new Doxorubicin-like drug.

Figure 7: Example of a hypothetical analysis of mRNA levels for discovering new anticancer drugs. A= Slope ofthe log A vs. C plot (candidate drug) - Slope

of the log A vs. C plot (Doxorubicin).

Panel a) Displays plot of drug-induced changes in the slope of log-A vs. C plots of PDE for each of the 5 drug candidates relative to doxorubicin. Drug

candidate 3’s curve nearly mimics the doxorubicin curve; hence drugcandidate 3 is most likely the best anti-breast cancer drug of the 5 drug candidates.

Panel b) Displays raw data table for each drug candidates’ changes in the slope of the log A vs. C plots of PDE. Includes residual between drug-induced
change and doxorubicin change and RSS for each therapeutic. Drug 3 displays the lowest sum of residual squares and is thus the most effective drug.
Additional 2sample t-tests can beconducted using an alpha level of 0.05 to determine which therapies, if any, significantly differ from the others.

produce results that do not maximize patientsurvival in each
mechanism. Additional 2 sample hypothesis tests can be conducted
using an alpha level of 0.05 to determine which therapies, if any,
significantly differ from the others [17,18].

CONCLUSION

To do so, we hypothesized that using the Planckian Distribution
Equation (PDE) discovered at Rutgers University would allow for
us to develop a novel predictive procedure foranticancer drugs.
PDE has become a common medical research tool as a result of
its ability to fit nearly all long-tailed histograms. We analyzed the
mRNA data (rather than the mRNA nucleotide sequence data)
measured from 20 breast cancer patients using the PDE-derived log
A vs. C plots. PDEAitted linear regression models were developed
for each data subset derived from the free-parameters A and C,
where X representedLog (A x 10%) and Y represents C. A second
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subset of this data was developed such that the mechanism value
was represented by the X-coordinates and the net difference in slope
change between long and shortsurviving patients (AM=AM] -
AMghore) was represented by the Y-axis. Each plot demonstrated
a high correlation between the two variables (R*>0.70). The final
model displays each mechanism along the X axis and a wave-
like distribution of the meandifference between long and short
surviving patients along the Y axis.

By following the procedure defined in Table 4, potential anti-breast
cancer drugs can beefficiently identified. Visual or quantitative
comparison of a drug-candidate’s generated plot to that of the
doxorubicin plot provides a novel method to predict the clinical
efficacy of the breast-cancer therapeutic.

It is important; however, to ensure that this research does not end
with the results of this single PDE based analysis. We have provided
a novel biostatistical skeleton for analysis of independent breast-
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cancer transcriptomes. We hope, though, that future studies will
confirm andrefine our methodology about the use of the Planckian
Distribution Equation-based algorithms described in this paper as
an effective strategy for discovering novel anti-cancer drugs. Just as
prominent cancer research figures Sidney Farber and Mary Lasker
would echo, the war on cancer is just that; a never ending battle
defined not by a single victory, but by small progressiontowards
early detection and curing.
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