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ABSTRACT
We observe the expression levels of apoptotic cells, Bcl-2/Bax and caspase-9 on abdominal aorta of spontaneously 
hypertensive rats (SHRs) to investigate impact and mechanisms of angiotensin converting enzyme inhibitory peptide 
LAP in apoptosis of vascular smooth muscle cell. A total of 20 male SHRs were studied to detect apoptotic cells and 
the expression of apoptosis-related proteins (Bcl-2, Bax, caspase-9). The index of apoptotic cells in LAP group was 
significantly lower compared to the control group. The expression of Bcl-2 in the LAP group was significantly higher 
than the control group. However, the levels of Bax and caspase-9 expression in the LAP group were significantly 
lower compared to the control group. The apoptosis index was negatively correlated with Bcl-2 and positively 
correlated with Bax/caspase-9. Similarly, the inflammation markers in LAP group were significantly lower than 
those in the control group. The expression of Ang II was significantly decreased after treating with LAP in the 
abdominal arteries. Angiotensin- converting- enzyme inhibition peptide LAP inhibited apoptosis of vascular smooth 
muscle cells through up-regulation of Bcl-2 and down-regulation of Bax and caspase-9 in SHRs. 
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INTRODUCTION

Essential hypertension is an important cause and risk factor of 
cardiovascular and cerebrovascular diseases. It can affect the 
structure and function of important organs and seriously impact 
human health. With the development of the studies related to 
cardiovascular diseases, vascular remodelling has recently been 
proposed to be one of the most important mechanisms. Vascular 
remodelling with adaptive changes of hemodynamic or humoral 
factors is the pathophysiological basis of complications of 
hypertension. The major pathological manifestations in vascular 
remodelling were imbalance between cell proliferation, apoptosis of 
vascular smooth muscle cells and deposition of extracellular matrix 
[1]. These are important pathological changes of hypertension, 
and results in a continued deterioration in the structural basis of 
hypertension. The vascular structure remodelling including the 
regression of vascular hypertrophy is now being considered as a key 
therapeutic target in an effort to reduce mortality and morbidity 
associated with high blood pressure [2]. The Renin-angiotensin 
system (RAS) is one of the important factors in causing vascular 
remodelling. Angiotensin II, a component of the renin-angiotensin-

aldosterone system, has been reported to be associated with the 
pathophysiology of vascular remodelling in hypertensive patients. 
Recently, several studies confirmed that a high level of Angiotensin 
II in local tissue would lead to an imbalance between apoptosis and 
proliferation of vascular smooth muscle cells, which may be one 
of the mechanisms of hypertensive vascular remodelling [3-5]. At 
present, many researchers have focused on the dietary prevention 
of development of hypertension. They have a particular interest in 
the biological activity of peptides and proteins derived from nature. 
ACE inhibitory peptides have been shown to inhibit ACE but they 
have small side effects. The ACE inhibitory peptide LAP which 
was purified Leu-Arg-Pro-Val-Ala-Ala from bovine lactoferrin (bLf) 
possesses several physiological functions. A previous study suggested 
that peptide LAP possesses antihypertensive activity and improves 
vascular remodelling [5]. But it is unclear if it really affects apoptosis 
of smooth muscle cells in the vascular remodelling process or not. 
The molecular mechanism associated with apoptosis of smooth 
muscle cells in the vascular remodelling process remains relatively 
unexplored. Therefore, the effects and molecular mechanisms of 
peptide LAP upon apoptosis in the vascular remodelling process 
were investigated in this study.
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The Planckian Distribution Equation as a Novel Method to Predict the 
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ABSTRACT

Patient-specific, personalized medicine is evidently required to administer optimized therapeutics and prevent 
treatment-related mortality. In order to develop a predictive model for breast cancer therapy, the following study 
analyzed the mRNA data of 4,704 genes derived from 20 breast cancer patients before and after doxorubicin 
treatment for 16 weeks. The genomic data of each patient was first stratified into 9 groups based on mRNA expression 
in response to the tumor and to the doxorubicin treatment. The study then employed the Planckian Distribution 
Equation (PDE) discovered at Rutgers University to model the stratified samples by transforming each mechanism 
into a single long-tailed histogram fitted by the PDE. PDE is a novel algorithm used to linearly map long-tailed 
histograms onto a given category of functions on the Planckian Plane. Our PDE model is based on 3 parameters - A, 
B, and C - of which 2 were extracted from each model to generate the plots. The drug-induced slopes of the A vs. C     
plots were then determined for all 9 mechanisms of each patient. The study observed an increase in post-treatment 
mRNA levels for longer surviving patients in 6 distinct groups of genes. Further analysis displayed how the drug 
treatment uniquely altered each of the 9 mechanisms based on the length of patient survival. These results indicate 
that the PDE-based procedures described herein may provide a novel tool for discovering potential anti-breast cancer 
pharmaceuticals.
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INTRODUCTION

Despite advancements in treatment, breast carcinoma has 
remained an extremely fatal malignancy, killing an estimated 
42,170 females in the United States in 2019, the second most of 
any cancer [1]. Clinical studies have estimated that nearly 7.5% of 
all cancer deaths are caused by chemotherapy -- over-treatment with 
faulty medications [2]. A dire need for advanced research into pre-
determining the effectiveness of breast cancer pharmacotherapy 
exists, with the livelihood of millions of women at stake. The 
following paper provides a novel method for predicting the 
clinical success of anti-breast cancer drugs based on the Planckian 
Distribution Equation (PDE).

In 2000, Perou et al. at Stanford University measured the RNA 
levels of 8,102 genes in breast cancer tissues biopsied from patients 
before and after 16-week doxorubicin treatment using Microarray 
techniques [3]. All genes whose RNA data were not complete were 
removed, leaving a total 4,740 select open reading frames (ORFs) 
per patient. From each patient, two groups of data were designated 
as ΔT and ΔD, depending on the magnitude of RNA changes are 

due to tumor (T) or due to drug (D) treatment respectively. The 
pair of ΔT and ΔD values were converted into an angle using the 
formula α=arctan (ΔD/ΔT), which creates the following 9 classes 
- mechanisms - of angles: 1(-22.5 - 22.5), 2(22.6 - 67.5), 3(67.6 - 
112.5), etc. Our study then analyzed each mRNA mechanism to 
determine if a significant difference existed between long-surviving 
and short-surviving patients.

The results detected a statistically greater change in the slope of the 
A vs. C plots of PDE, in which the x coordinates represent log (A 
× 10-3) and the y coordinate represents the C parameter, for long 
surviving patients compared to short surviving patients. These 
results indicate that doxorubicin-induced changes were greater 
among long surviving patients than short surviving patients. Since 
the analysis is based on individual patient data, these novel results, 
if mimicked by other anti-cancer therapy candidates, can be utilized 
to discover the most effective cancer pharmaceuticals for treating 
individual patients. The following section details the microarray 
data collection methodology for each breast cancer patient. It then 
outlines the theoretical background of the Planckian distribution 
equation algorithm and its application to cancer pharmacotherapy. 
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The application of the PDE is then described more specifically for 
our breast cancer transcriptome.

MATERIALS AND METHODS

The project was conducted completely virtually, with the 
aforementioned microarray data collection having been included 
[3]. All statistical methods and algorithms were employed via 
machine learning tools such as Microsoft Excel.

Microarray data collection and analysis

DNA Microarray data collection is among the most significant tools 
utilized for thorough understanding of functional genomics [4]. 
This study equipped advanced use of microarray analysis to extract 
key data from biopsied tumor tissue before and after doxorubicin 
treatment.

Micoarray experimentation occurs as a result of excess cellular 
mRNA degradation and transcription. Expressed genes are 
transcribed into mRNA, which are isolated and converted 
into complementary strands of cDNA via the enzyme reverse 
transcriptase. Figure 1 displays how the mRNA levels inside the 
cell are affected by the two opposing processes – (i) Increases in the 
rate of transcription of mRNA to cDNA catalyzed by transcriptome 
and (ii) Transcript degradation of excess mRNA catalyzed by 
degradosome. The microarray experiments involved the following 6 
key steps to effectively measure mRNA levels within cells: (1) Isolate 
RNAs from broken cells. (2) Synthesize fluorescently labeled cDNA 
from isolated RNAs using reverse transcriptase and appropriately 
fluorescently labeled nucleotides. (3) Prepare a microarray either 
with EST (expressed sequence tag, i.e., sequences several hundred 
nucleotides long that are complementary to the stretches of the 
genome encoding RNAs) or oligonucleotides (synthesized right on 
the microarray surface). (4) Pour the fluorescently labeled cDNA 
preparation over the microarray surface to effect hybridization 
and wash off excess debris. (5) Measure the light intensity of 
fluorescently labeled cDNA bound to the microarray surface using 
a computer-assisted microscope. (6) Display the final result as a table 
of numbers, each registering the fluorescent intensity of a square 
on the microarray which is proportional to the concentration of 
cDNA (and ultimately to the RNA levels in cells before isolation) 
located at row x and column y, rows indicating the identity of genes, 
and y the time or the conditions under which the RNA levels are 
measured [5,6].

From each patient, the molecular data from 4 distinct tissue and 
cell types were generated as shown in Figures 2 and 3. Treatment 
groups’ normal tissue (N), before treatment (BE), and after 
treatment (AF) generated the molecular data (in the form of the 
mechanism tables seen in Figure  4 for the study into theranostics 
and personalized therapy) [7]. Microarray analysis was then used 
to measure RNA sequences and differential expression patterns 
among data groups - a process collectively known as ribonoscopy 
[8] (Table 1). The tumor samples were used to measure RNA levels 
encoded by a total of 8,102 genes, of which 4,740 genes and their 
transcripts have been analyzed here. Table 2 displays a partial list of 
the microarray data measured from the normal breast cancer cell 
culture (N) and the breast cancer tissues of patients #7, #27, and 
#39 measured before (BE) and after (AF) doxorubicin treatment for 
16 weeks.

The mRNA changes were then classified into 9 distinct groups 

The figure displays the process by which mRNA molecules are degraded to nucleotides for 
recycling. Two routes by which mRNA levels can be affected are (i) Changes in the rate of 
transcription of DNA to mRNA by transcriptosome, and (ii) Changes in rate of degradation of 
mRNA into nucleotide by degradosome. 

(Source: Kim, Chaewon Breast Cancer and PDE, 2018). 

Figure 1: The conversion of DNA to mRNA and protein via the enzyme 
transcriptase and ribosomes.

 

 

Figure 2: The four types of tissue or cells that are required to generate 
molecular data e.g. RNA sequences and differential expression patterns 
measured with microarrays or equivalent next generation sequencing 
techniques (Ribonoscopy).

based on the magnitude of each change due to tumor (ΔT) and 
due to drug treatment (ΔD=AF - BE). These groups were generated 
based on a unit circle angle measure, where angle α°=arctan (ΔD/
ΔT) (Figure 4a). Figure 4b displays the classification method for 
mechanisms 1-8 based on the α values (0° - 22.5°, 22.5° - 45°, 45° 
to 67.5°, etc.). Mechanism 9 is classified as the range of angles 
excluding those lying outside the mean +/- 2 standard deviations 
(α = +/- 5%) for each other mechanism. By developing this angle 
that compares expression before and after treatment, the study 
was able to generate a single value that specifically illustrates the 
effectiveness of the treatment on each ORF. These 9 mechanisms 
provide key insights into the relationship between pretreatment 
tumor mRNA change and post-doxorubicin treatment change, 
allowing us to categorize the drug-induced changes in the tumor 
tissue.

The results of the microarray analysis are displayed in a tabular form 
exemplified by Table 1, in which N=The number of patients; n=The 
number of ORF (Open-reading frames of single genes), SM=Patient 
survival period in months, N=Normal tissue biopsies, BE=Pre-drug 
treated tissue, AF=post-drug treated tissue, and M=The mechanism 
number as defined in Figure 4. Figure 3 displays an extracted 
portion of the mechanism summary table, which quantified each 
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Figure 3: Mechanism-based table for each of 20 doxorubicin-induced breast cancer patients by open reading frame (ORF).

 

 

 

ΔT = Change in RNA levels due to tumor, i.e., BE-N in Panel a) A; ΔD = Change in RNA levels in tumor 
tissues due to drug treatment, i.e., A – BE. The angle α was measured counterclockwise starting from the 
positive x-axis as α = arctan (ΔD/ ΔT). Each of the 9 mechanisms is defined in terms of the range of the 
associated α values as indicated in Panel b). The angle for Mechanism 9 cannot be so calculated. 

 
Figure 4: The mechanism circle.
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ORF in each of the 20 patients as one of the 9 mechanisms. The 
microarray analysis provided a thorough method to classify each of 
20 doxorubicin-treated breast cancer patients by genome, allowing 
us to create a patient-specific methodology for treatment efficacy. 

Planckian Distribution Equation (PDE)-based analysis of mRNA 
data

Derived from the planck-shannon classifier in 2008, PDE is an 
algorithm that can map three or more sets of long-tailed histograms 
(LAH’s) into one or more categories of functions, each category 
exhibiting a linearly correlated line on the Planckian plane [9]. PDE 
is based on Planck's equation for the wavelength and intensity of 
blackbody radiation (Figure  5a) and has proven to be a successful, 
novel quantitative method to determine potential drug targets [10]. 
Its use in making statistically valid scientific inferences within medical 
applications has been widely studied and verified in the past [11].

PDE’s (Figure 5b) derivation from the blackbody radiation-like 
equation replaces the universal constants and temperature with free 
parameters, A, B and C, resulting in the algorithm y = (A/(x + B)5 )/
(eC/(x + B) – 1), where x is unspecified and y represents the cellular wave-
frequency. Within PDE, the transformed a-parameter represents 
the number of standing waves per unit frequency per unit volume 
of the cell, while the c-parameter indicates the average energy of each 
wave [12]. PDE can also be derived from the Gaussian-like equation 
(GLE), y = Ae–(x-µ)2/2α2 (where A is a parameter unrelated to A 
appearing in PDE), by non-linearly transforming its independent 
variable, x, and keeping the dependent variable y constant [10]. The 
possible reasons for the universality of PDE (i.e., PDE fits almost 
any long-tailed histograms generated in almost all fields of inquiry) 
include: 

(i) The universality of the wave-particle duality, 

(ii) Selection of subsets of random processes as the basic 
mechanism of generating order, organization, and structure 
in the Universe, and (iii) the Planckian process as active 
symmetry-breaking process driving the self-organization of 
the Universe [13,14]. In PDE (Figure 1b), the first term is 
known (in analogy to the blackbody radiation equation) 
to be related to the number of vibrational modes per unit 
frequency of volume and the second term is known to be 
related to the average energy of each mode, [15]. PDE has 
been found to fit a wide-range of long-tailed histograms 
within biochemistry, such as that seen in Panels c) and d) in 
Figure 5. By having flexible parametric values A, B, and C, 
single point residual values of the PDE curve relative to the 
experimental curve can be easily decreased to allow PDE to 
better fit the curve.

PDE has been proven to be biologically viable in differentiating 
between sequential genomic data within breast cancer patients 
and placebos in the past, but this study represents its first use 
on a complete transcriptome to predict the efficacy of treatment 
[16]. Our study equipped PDE by first compiling the data of the 
20 breast cancer patients into a single location, specifically listing 
the cellular mRNA levels of each of 4,704 genes pre and post-
doxorubicin treatment and the associated treatment mechanism 
(see above) of each open reading frame (ORF). We then studied 
the ORFs for each mechanism of each patient by first dividing 
the overall mRNA transcriptome into 10 individual datasets split 
between 5 short-surviving (patients surviving under 10 months) and 
5 long-surviving (patients surviving greater than 75 months).

Histograms were developed for each dataset of each patient (each 
representing one of 9 studied mechanisms for the selected patient) 
using a bin range of 0-5.0 at intervals of 0.1 to include all data 
within 3 standard deviations (σ) of the respective mean (µ). The bin 
range and intervals were chosen based on prior PDE-analysis from 
[8,9]. For each histogram, the x-axis represents the bin number and 
the y-axis represents the mRNA levels within a given bin range. 
The experimental curve for the 9 mechanisms of each patient for 
the before data was fitted by the PDE until all residual values were 
minimized. PDE was implemented in single steps for each term 
of the algorithm (A, B, and C) and then combined, to minimize 
errors within the study. The single steps were then combined, and 
the residual sum of squares (RSS) between the PDE value and 
experimental function value for each ORF was calculated. Solver 
Software was then used to minimize this value, thereby accurately 
fitting the PDE curve to the experimentally generated curve. Figure 
5d displays the results of fitting mRNA histogram to the PDE 
curve for before data of a short surviving patient - Patient 12 - over 
100 ORF’s. Similar histogramical PDE analysis was conducted 
for the after (AF) doxorubicin mRNA data in relation to specific 
mechanisms. After fitting the PDE to each mechanism for each 
patient, A and C data pairs were compiled for both the before 
and after data. The parameter A values were then transformed to 
their logarithms in order to represent them on the same scale as C, 
which is defined as an exponential term in PDE. Thus, a given (A, 
C) pair was converted to an equivalent (log (A),C) pair.

The (A,C) points for the 5 short-surviving points and the 5 long-
surviving points for each mechanism were utilized to create 20 
linear regression models, inclusive of both before and after data. 
Examples of a single model for each before and after dataset are 
shown in Figures 5e and 5f. Change in slope was then calculated 
for each linear regression model (ΔM=mAF-mBE), and a final plot 
was developed where the x-coordinates represented the mechanism 

Table 1: The structure of the microarray data measured from 20 breast cancer patients before (BE) and after (AF) treatment with doxorubicin for 16 
weeks. ORF=Open Reading Frame; N = Normal human breast tissue; BE=Before Treatment; AF=After Treatment; M=Mechanism. N=The number of 
ORF analyzed; N=The number of patients.

ORF
Patient 1 Patient 2 . . . Patient N

N BE AF M N BE AF M . . . N BE AF M

1    2    1 . . .    6

2    3    6 . . .    2

3    8    5 . . .    7

4    1    4 . . .    9

. ..    . . .    . . . . . .    . . .

n    5    6 . . .    1
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Figure 5: The origin and applications of the Planckian Distribution Equation (PDE). 

 
 

 

 
 

Figure 5: The origin and applications of the Planckian Distribution Equation (PDE).  

Panel a) Planck’s blackbody equation developed for quantum mechanics and 
wavelength/frequency/energy comparison.  

Planckian Distribution Equation (PDE):

y  = A/(x + B)5/(eC/(x + B) – 1)

Figure 5. The origin and applications of the Planckian Distribution Equation (PDE).

Panel a) Planck’s blackbody equation developed for quantum mechanics and wavelength/frequency/energy comparison.

Panel b) Planckian Distribution Equation (also called Blackbody Radiation-like Equation, BRE) was derived from the Planck’s radiation formula (PRF) 
by replacing the universal constants and temperature in PRF with free parameters, A, B and C (O’Brien et al., 2006). The interpretation of the two 
terms given above is adopted from the interpretation of the similar terms in Planck’s blackbody radiation equation (see a))

Panel c) Example use of PDE to fit to experimental data represented as a long-tailed histogram.; visual interpretation shows theoretical curve mimicking 
the experimental curve in extremely similar fashion.

Panel d) Example use of PDE to fit experimental breast cancer data of 67 open reading frames; panel displays relative A, B, C values from the PDE 
curve implemented within the algorithm to fit experimental data.

Panel e) (A’, C) plot for mechanism 6 short patients with use of the before data; analysis is conducted for 100 open reading frames of the transcriptome

Panel f) (A’, C) plot for mechanism 6 short patients with use of the after data; analysis is conducted for 100 open reading frames of the transcriptome
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value and the Y coordinates displayed the ΔM value for said 
mechanism. These drug-induced ΔM generated 2 values for each 
mechanism: one representing the drug-induced change for long-
surviving patients and one representing the drug-induced change 
for short-surviving patients.

RESULTS AND DISCUSSION

The log A vs. C plots for each of the 9 mechanisms long-surviving 
and short-surviving before and after drug treatment produced the 
results summarized in Table 3. As shown in column 4, each plot 

Table 2: A partial list of the original microarray data measured from normal breast tissues (N) and breast cancer patients #7, #27 and #39 before (BE) and 
after (AF) treated with doxorubicin for 16 weeks.

ORF Norma l 1 Norma l 2 Norma l 3 Avg (N) 7-Before 7-AF 27-BE 27-AF 39-BE 39-AF

ACACB 0.568 4.493 4.79 3.284 0.851 5.473 1.131 1.044 0.881 1.107

ACTC 1.441 1.036 0.417 0.964 0.762 0.936 0.583 0.585 0.774 0.65

ATF2 0.8 1.131 0.566 0.832 0.62 0.66 0.579 0.691 0.908 0.69

LOC51576 0.805 0.792 0.549 0.715 1.04 1.175 0.752 0.775 1.089 0.851

ALB 1.244 1.149 0.868 1.087 0.382 1.121 1.182 1.354 1.615 1.043

AKR7A2 0.871 0.963 0.9 0.911 0.911 0.823 4.347 4.806 0.604 0.631

ALPP 1.514 0.92 0.82 1.084 0.731 3.134 0.844 0.95 1.329 2.136

AMMECR1 0.961 1.286 0.446 0.898 0.478 0.575 0.525 0.593 0.607 0.832

ABP/ZF 7.576 3.142 2.152 4.29 0.59 2.988 0.71 0.887 5.116 2.066

AS3 1.007 1.002 0.728 0.912 0.85 0.927 1.674 1.864 1.261 0.733

ANK3 2.213 1.653 0.482 1.449 2.216 0.91 0.193 0.211 4.068 2.173

ANK3 1.889 1.902 0.811 1.534 2.233 2.01 0.149 0.216 3.888 2.834

AHR 0.605 0.642 0.815 0.688 0.998 1.475 0.288 0.446 1.165 0.975

ATP6A1 0.849 0.803 0.57 0.741 0.918 1.295 1.719 2.04 0.873 0.575

ABCF3 1.08 1.01 2.392 1.494 2.284 1.358 1.168 1.324 0.998 1.163

BAGE 0.763 0.628 1.195 0.862 0.765 0.831 0.864 0.878 0.831 1.03

BZRP 1.529 1.374 1.848 1.584 1.915 2.486 1.89 1.177 2.325 1.998

BLVRB 1.722 1.791 3.63 2.381 0.383 1.431 0.467 0.42 1.46 2.498

CAMK2G 0.729 0.822 0.699 0.75 0.748 0.853 1.666 1.552 0.838 0.667

CANX 1.059 1.006 0.451 0.839 0.916 0.891 0.536 0.64 0.492 0.521

CRTAP 1.185 1.591 1.347 1.374 0.773 1.386 0.531 0.732 0.759 1.243

CTNNA1 0.476 0.497 0.385 0.453 0.804 0.926 0.643 0.644 0.687 0.61

LOC56996 0.928 0.991 0.528 0.815 0.834 0.595 1.514 1.663 0.768 1.644

CITED1 2.018 2.925 3.103 2.682 0.774 1.576 0.823 0.52 0.833 1.795

CIDEB 2.261 1.106 1.384 1.584 3.789 4.753 1.677 1.613 1.968 4.076

CENPE 0.976 0.744 0.602 0.774 1.143 1.405 0.858 0.89 1.019 0.707

CGI-204 0.491 0.376 0.366 0.411 1.108 2.123 0.714 0.893 0.734 1.181

LOC51622 2.711 1.22 2.863 2.265 3.654 2.073 2.676 1.844 2.075 3.663

LOC51622 0.512 0.698 0.515 0.575 0.919 0.954 0.891 1.134 0.548 0.309

CHRNE 1.414 1.288 1.303 1.335 1.432 0.249 1.388 1.303 2.072 1.104

CHP1 0.716 0.555 0.257 0.509 0.474 0.341 0.657 0.582 0.965 0.471

C21ORF56 1.248 1.538 1.429 1.405 0.92 1.412 0.889 1.185 1.258 1.305

ORF1 0.343 0.505 1.243 0.697 1.283 3.02 0.628 1.121 0.041 0.969

CYP 0.19 0.346 0.1 0.212 0.757 0.957 0.384 0.43 0.907 0.566

CLU 1.939 2.154 1.097 1.73 0.877 0.719 1.758 1.765 1.028 0.868

CLU 5.682 3.616 2.835 4.044 1.671 2.423 5.532 9.168 2.453 2.079

CLU 2.53 2.017 1.405 1.984 1.275 1.462 2.301 3.264 1.617 1.302

MYCBP 0.617 0.68 0.487 0.595 2.523 1.612 1.183 1.224 0.718 0.454

COPB2 0.255 0.275 0.294 0.275 0.604 0.312 0.534 0.616 0.5 0.351

CFL1 1.257 0.522 1.311 1.03 1.992 4.343 1.993 6.79 3.245 2.136

COL1A1 1.08 1.006 0.246 0.777 0.981 2.42 0.98 1.104 1.325 0.871

COL11A1 0.392 0.401 1.179 0.657 3.282 34.87 7.129 4.118 24.562 31.278

C1NH 1.057 0.829 0.607 0.831 0.707 1.206 1.039 0.865 1.098 1.31

C1GALT1 1.028 1.112 0.863 1.001 1.283 1.025 0.802 0.739 0.93 1.123

COX11 0.639 0.719 0.506 0.621 0.825 0.618 1.494 1.601 0.5 0.408

CRB1 1.4 0.819 0.96 1.06 1.071 4.684 1.261 1.512 2.654 1.651
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displayed a statistically significant relationship between the two 
variables (R2>0.700). The results for the change in slope of the plots 
for each mechanism is defined by a single value in Table 3 (column 
6), which displays the difference in drug-induced mRNA change 
between long and short surviving patients.

Table 3 indicates that the average standing energy of a standing 
cellular wave is greater among long-surviving patients than 
short-surviving patients in mechanisms 1, 2, 3, 4, 6, and 8 post-

treatment. Excluded mechanisms 5 and 9 represent a decrease in 
tumor mRNA levels with no drug-induced mRNA change and 
no significant change in mRNA expression, respectively. Since 
neither displays a conclusive relationship about drug-induced 
change, mechanisms 5 and 9 are biochemically insignificant for 
patient treatment. Hence, the study can conclude that doxorubicin-
induced slope changes were significantly greater among long-
surviving breast cancer patients than short-surviving breast cancer 

Table 3: Drug-induced changes in the slopes of the Log (A) vs C plots of the human breast cancer RNA levels exhibiting Mechanisms 1, 2, 3, 4, 5, 6, 7, 8, 
or 9. A and C are two of the three parameters of Planckian Distribution Equation (PDE), y = (A/ (x + B) 5)/ (eC/ (x + B) – 1).

Mechanisms Longevity ΔSlope R2 ΔSlope = SlopeAF – SlopeBE ΔSlope = ΔSlopeLong – ΔSlopeShort

1

Short AF 1.0354 0.986 -0.1136

0.011
Short BE 1.149 0.984  

Long AF 0.8933 0.989 -0.1026

Long BE 0.9959 0.996  

2

Short AF 1.0028 0.908 0.1304

0.2404
Short BE 0.8724 0.973  

Long AF 1.2181 0.97 0.3708

Long BE 0.8473 0.947  

3

Short AF 1.0424 0.963 0.3982

0.2042
Short BE 0.6442 0.981  

Long AF 1.3782 0.992 0.6024

Long BE 0.7758 0.972  

4

Short AF 0.7842 0.997 0.323

0.1091
Short BE 0.4612 0.996  

Long AF 0.8815 0.996 0.4321

Long BE 0.4494 0.982  

5

Short AF 0.5625 0.994 0.0032

-0.0487
Short BE 0.5593 0.997  

Long AF 0.415 0.99 -0.0455

Long BE 0.4605 0.992  

6

Short AF 0.495 0.983 -0.2904

0.0655
Short BE 0.7854 0.9564  

Long AF 0.5265 0.9855 -0.2239

Long BE 0.7504 0.9317  

7

Short AF 0.6283 0.9267 -0.1935

-0.1378
Short BE 0.8218 0.64  

Long AF 1.183 0.978 -0.3673

Long BE 1.5503 0.773  

8

Short AF 0.7401 0.9943 -0.4114

0.0288
Short BE 1.1515 0.972  

Long AF 0.6245 0.9915 -0.3826

Long BE 1.0071 0.982  

9

Short AF 0.7638 0.99 -0.0009

-0.1007
Short BE 0.7647 0.978  

Long AF 0.6631 0.904 -0.1016

Long BE 0.7647 0.978  
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patients for each remaining mechanism. A final plot seen in Figure 
6 summarizes the results of the present study. Mechanism values 
1-9 are ordered on the x-axes and drug-induced changes in slope 
between long-surviving and short-surviving patients are presented 
on the y-axes. The results display a wave-like distribution for slope 
changes as a function of each mechanism, which can be used as 
evidence for the anti-cancer efficacy of other drug candidates. This 
procedure is described in more detail in Table 4, which displays 
the process by which treatment longevity can be predicted. Studies 
should biopsy breast cancer tissue before drug treatment, and 
then cell culture said tissue in the presence and absence of the 
drug candidate to generate the AF and BE data. Analysis should 
then be conducted as illustrated in this paper by (1) measuring the 
genomic mRNA levels in BE and AF tissue samples with genome-
wide cDNA microarrays, (2) determining the values of the A and 
C parameters, and (3) plotting log A vs. C for both BE and AF 
data. The drug-induced changes in the slopes of the regression line 
of log A vs. C plots must be computed for each mechanism and a 
chart similar to that presented in Figure 7a must be developed. By 

visual examination of the curve distribution for the mechanism vs. 
drug-induced slope change of long and short survivors  plot, the 
drug-candidate that best mimics doxorubicin and proves to be an 
effective therapeutic can be identified. Algorithmic computation 
can also be done by determining which therapeutic candidate best 
mimics the doxorubicin plot via calculation of the residual (ŷ2) for 
each mechanism. The drug candidate that presents the lowest value 
for the residual sum of squares (RSS) represents the most effective 
anticancer therapeutic. Figure 7b displays a hypothetical scenario 
that predicts which of 5 drug candidates will prove most effective in 
treating breast-cancer. The scenario displays use of both the method 
of visual examination (Figure 7a) and the method of RSS numerical 
comparison (Figure 7b). As presented in the results of the scenario, 
use of either method yields the same result - hypothetical candidate 
3 [12]. Through determining which drug most mimics the patient 
survival-outcome of proven treatment Doxorubicin, the scenario 
was potentially able to identify the most effective candidate. 
Drug candidates that do not mimic Doxirubison’s behavior can 
be interpreted to be suboptimal treatment methods since they 

Figure 6: Complete chart displaying the difference in drug-induced changes (Y-axis) in slope of the log A vs. C plots between long and short surviving 
patients for each mechanism (X-axis).

Table 4: Procedures for obtaining mRNA data for PDE-based analysis to discover doxorubicin-like drugs mimicking the wave-like curves depicted in Figure 6.

1 Biopsy the tumor and normal breast tissue before drug treatment

2 Cell culture the biopsied tissues in the presence (or AFter) or absence of (or BEfore) the anticancer drug

3 Measure the RNA levels in BE and AF tissue samples with genome-wide cDNA microarrays

4 Determine the A and C parameter values of the Planck Distribution Equation fitting the BE and AF data

5 Construct the log A vs. C plots

6 Compute the drug-induced changes in the slopes of the regression lines of the log A vs. C plots
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b) 
Mech # 

Doxo- 
rubicin 

 
Drug1 

 
Δ2(1) 

 
Drug2 

 
Δ2(2) 

 
Drug3 

 
Δ2(3) 

 
Drug4 

 
Δ2(4) 

 
Drug5 

 
Δ2(5) 

1 0.011 0.102 0.00828 -0.02 0.00096 0 0.00012 0.09 0.00624 -0.06 0.00504 

2 0.2404 0.3 0.00355 -0.15 0.15241 0.225 0.00023 -0.185 0.18096 0.21 0.00092 

3 0.2042 0.24 0.00128 0.25 0.00209 0.211 0.00004 0.06 0.02079 0.21 0.00003 

4 0.1091 -0.1 0.04372 0.3 0.03644 0.12 0.00011 -0.12 0.05248 0.03 0.00625 

5 -0.0487 -0.06 0.00012 0.02 0.00471 -0.08 0.00097 0 0.00237 -0.1 0.00263 

6 0.0665 0.21 0.02059 0.4 0.11122 0.09 0.00055 0 0.00442 0.02 0.00216 

7 -0.1738 0.03 0.04153 0.2 0.13972 -0.185 0.00012 0.225 0.15904 0.011 0.03415 

8 0.0288 -0.1 0.01658 -0.3 0.10810 0.06 0.00097 0.211 0.03319 0.2404 0.04477 

9 -0.1007 0.02 0.01456 -0.2 0.00986 -0.12 0.00037 0.12 0.04870 0.2042 0.09296 

Sum of Δ2   0.15024  0.56555  0.00352  0.50822  0.18893 

                                                A new Doxorubicin-like drug. 

 

 b) 

Panel a) Displays plot of drug-induced changes in the slope of log-A vs. C plots of PDE for each of the 5 drug candidates relative to doxorubicin. Drug 
candidate 3’s curve nearly mimics the doxorubicin curve; hence drug candidate 3 is most likely the best anti-breast cancer drug of the 5 drug candidates.

Panel b) Displays raw data table for each drug candidates’ changes in the slope of the log A vs. C plots of PDE. Includes residual between drug-induced 
change and doxorubicin change and RSS for each therapeutic. Drug 3 displays the lowest sum of residual squares and is thus the most effective drug. 
Additional 2sample t-tests can be conducted using an alpha level of 0.05 to determine which therapies, if any, significantly differ from the others.

Figure 7: Example of a hypothetical analysis of mRNA levels for discovering new anticancer drugs. Δ = Slope of the log A vs. C plot (candidate drug) – Slope 
of the log A vs. C plot (Doxorubicin).

produce results that do not maximize patient-survival in each 
mechanism. Additional 2 sample hypothesis tests can be conducted 
using an alpha level of 0.05 to determine which therapies, if any, 
significantly differ from the others [17,18].

CONCLUSION

To do so, we hypothesized that using the Planckian Distribution 
Equation (PDE) discovered at Rutgers University would allow for 
us to develop a novel predictive procedure for anticancer drugs. 
PDE has become a common medical research tool as a result of 
its ability to fit nearly all long-tailed histograms. We analyzed the 
mRNA data (rather than the mRNA nucleotide sequence data) 
measured from 20 breast cancer patients using the PDE-derived log 
A vs. C plots. PDE-fitted linear regression models were developed 
for each data subset derived from the free-parameters A and C, 
where X represented Log (A × 10-3) and Y represents C. A second 

subset of this data was developed such that the mechanism value 
was represented by the X-coordinates and the net difference in slope 
change between long and short-surviving patients (ΔM2=ΔMLong-
ΔMshort) was represented by the Y-axis. Each plot demonstrated 
a high correlation between the two variables (R2>0.70). The final 
model displays each mechanism along the X axis and a wave-
like distribution of the mean difference between long and short 
surviving patients along the Y axis.

By following the procedure defined in Table 4, potential anti-breast 
cancer drugs can be efficiently identified. Visual or quantitative 
comparison of a drug-candidate’s generated plot to that of the 
doxorubicin plot provides a novel method to predict the clinical 
efficacy of the breast-cancer therapeutic.

It is important; however, to ensure that this research does not end 
with the results of this single PDE based analysis. We have provided 
a novel biostatistical skeleton for analysis of independent breast-
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cancer transcriptomes. We hope, though, that future studies will 
confirm and refine our methodology about the use of the Planckian 
Distribution Equation-based algorithms described in this paper as 
an effective strategy for discovering novel anti-cancer drugs. Just as 
prominent cancer research figures Sidney Farber and Mary Lasker 
would echo, the war on cancer is just that; a never ending battle 
defined not by a single victory, but by small progression towards 
early detection and curing.
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