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Abstract
It has recently been reported that molecular targeting drugs fail to overcome the “oncogene/oncogenic signal-

addiction” of cancer cells. Tumor tissue is composed of heterogeneous cancer cells, so that the therapeutic response 
is difficult to predict. Recent advance in cancer research has strongly suggests that cancer stem cells contribute to the 
formation and maintenance of the heterogeneous cellular society in the tumor tissue. After all, this heterogeneity is the 
major cause of the acquired resistance to anti-tumor therapies. In this commentary, we would like to briefly explain the 
promising therapeutic targets of CD44 variant isoform and EpCAM, the “functional” cancer stem cell markers.
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Tumor Heterogeneity and Cancer Stem Cells
Tumor tissue is composed not only cancer cells but also various 

types of cells in the stroma; Cancer-associated fibroblasts (CAF), 
tumor-associated macrophages (TAM) etc. Cancer cells show invasion 
and metastasis in collaboration with CAF and TAM. Accumulating 
evidence suggests that tumor cells educate stroma cells as they enhance 
the malignant potential of tumor cells [1]. Given that cancer cells 
frequently have mutations in the cell-cycle regulatory proteins, tumor 
cells are mistaken as homogeneous. However, there exists a cellular 
heterogeneity in tumor tissues [2], which is why therapeutic response 
to the molecular targeting drugs is different depending on the genetic 
or epigenetic background of each tumor cell. Thus, the high degree of 
heterogeneity renders tumor tissue more easily to acquire the resistance 
to the molecular-targeting therapies focusing on “oncogene/oncogenic 
signal-addiction” [3]. Only the resistant clones survive, so that the level 
of heterogeneity is transiently diminished by the anti-cancer treatment, 
which is called “bottleneck effect”. Generally speaking, this “bottleneck 
effect” is lost and the heterogeneity is again recognized in the recurrent 
tumor tissue [2].

An emerging concept of the cancer stem cells (CSCs) simply 
explains how the hierarchy of tumor cells is formed. CSCs have the self-
renewal ability and multi-lineage differentiation potential [4,5], both of 
which are necessary to architect the secondary heterogeneous tumor 
lesion from a single cell (Figure 1). This diversity is responsible for the 
formation of minimal residual disease (MRD) [2], which leads to the 
latent relapse and the distant metastasis. MRD is frequently enriched in 
therapy-resistant clones with the “stemness” [6-8]. 

The Significance of CSC in Terms of Therapeutic 
Strategy

CSCs have been well-defined and intensively researched, but much 
remains to be elucidated about the function of CSCs in the tumor 
development and metastasis. We would like to focus on the biological 
characteristics of CSCs, which contributed to the therapeutic resistance. 
Stemness is composed of the various phenotypes of CSCs; resistance to 
redox stress via the synthesis of glutathione (GSH) and G0 cell cycle 
arrest under hypo-nutrient or growth factor conditions (Figure 1). 
Better understanding of the regulatory system of “stemness” is critical 
to develop the novel anti-tumor therapy focusing on CSCs.

Epithelial-mesenchymal transition (EMT) has widely been 
recognized as a crucial step in the invasion and metastasis as well as 
normal tissue development and wound healing [9]. EMT has long 
been believed to increase the number of CSCs at the invasive front and 
metastatic foci [10,11]. 

CD44 is an adhesion molecule to extracellular matrix such as 
osteopontin and hyaluronic acids [12]. CD44 has a numerous isoforms 
because of alternative splicing machinery mainly regulated by RNA 
binding protein epithelial splicing regulatory protein 1 (ESRP1) 
and epigenetic modulation of the HistoneH3lysine9trimethylation 
(H3K9me3) [13-15]. While CD44 variant isoform (CD44v) is 
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Figure 1: Bilateral perspectives into the entity of cancer stem cells (CSCs). 
CSCs are defined to show the self-renewal and multi-lineage differentiation 
potential, which contribute to the formation of the heterogeneous cellular 
population in the tumor tissue. On the other hand, CSCs have the biologi-
cal characteristics to maintain the “stemness”; resistance to ROS or DNA 
damage, adaptation to hypo-nutrient or growth factor microenvironment and 
metabolic reprogramming. It still remains elusive, however, these two cell 
populations are exactly the same entity each other.
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predominantly expressed in epithelial cancer cells, the CD44 standard 
isoform (CD44s) is mainly expressed in mesenchymal cancer cells. 
Epithelial tumor cells no longer express CD44v after EMT, and instead, 
express CD44s with high migratory and invasive phenotypes [13] 
(Figure 2). Mesenchymal tumor cells with CD44s expression after EMT 
tend to show the activation of phosphatidylinositol-3 kinase (PI3K)/
Akt signaling pathway in the metastatic foci in the lungs of the breast 
cancer cells [13].

Several transcription factors have been identified to induce EMT; 
FOXC2 in the basal-like breast cancer [16], SIP1/ZEB2 in ovarian, 
breast, and hepatic tumors [17], and Snail, Slug, Twist in several 
kinds of cancers [9]. Contrary to the accepted wisdom, the homeobox 

transcriptional factor Prrx1 induces EMT but decreases the number of 
CSCs. mesenchymal-epithelial transition (MET) is an important step 
for cancer cells to colonize and proliferate at the pre-metastatic niche. 
That is why the knockdown of Prrx1 induces MET and promotes the 
lung metastasis of breast cancer cells [18]. 

Furthermore, it has been demonstrated that tumor cells maintain 
epithelial phenotype with the high expression of CD44v at the invasive 
front [10]. This seems paradoxical to the current concept, but some 
researcher insist on the presence of CAFs with CSCs at the invasive 
front [19]. Indeed, CD44v is strongly expressed at the invasive front and 
negatively correlated with the expression of oncogenic protein c-Myc. 
Redox stress-induced Wnt signal activation is responsible for the 
inversed relationship between CD44v and c-Myc [10]. The irreversible 
quiescence of CSCs is finely regulated by the modulation of several 
kinds of stress derived from tumor microenvironment. 

Novel Therapy Attacking the “Functional” CSC Markers
There are many molecules exclusively expressed in CSCs. The 

specific isoform of CD44 and EpCAM are positively correlated with 
each other even in normal epithelial cells [20]. However, both the 
CD44v and Epithelial Cell Adhesion Molecule (EpCAM) are not just 
the surface markers of CSCs. We would like to briefly introduce the 
recent findings on this therapeutic approach. 

Novel therapy attacking the robustness against oxidative 
stress of CSCs

The heterogeneous expression pattern of CD44 is caused by the 
heterogeneous expression of ESRP1, which is mainly responsible for 
the alternative splicing of CD44 [13,15]. Epigenetic modulation of 
the histone at the site of ESRP1 is dynamic depending on the tumor 
microenvironment, which strongly supports the idea of “dynamic 
stemness model” [21], which is contrary to the widely-accepted idea of 
CSC hierarchy model. CD44v-positive cells are not necessarily express 
CD44v. After all, the H3K4me3 of the ESRP1 promoter lesion promotes 
ESRP1-inducing CD44v expression, whereas H3K27me3 suppresses 
it [15]. Intra-tumor heterogeneity in terms of CD44v expression is 
considered to be determined by this dynamic epigenetic change (Figure 
2).

There are several isoforms of CD44v, depending on which variable 
exons are inserted. Furthermore, different isoforms of CD44v exhibit 
the different biological function and it has been suggested that CD44 
variant is a promising therapeutic-target in the cancer therapy [22]. In 
particular, CD44v8-10, CD44 variant isoform including the variable 
exon 8-10, stabilizes xCT transporter at the cellular membrane. xCT 
forms a heterodimer with CD98 heavy chain (CD98hc), also referred 
to as 4F2. xCT amino acid transporter help CSCs exchange glutamate 
and cystine [23]. Cysteine, which is converted from cysteine, is a 
scarce substrate of GSH, major anti-oxidant molecule. Cancer cells are 
exposed to excessive amount of reactive oxygen species (ROS), which 
induces apoptosis, autophagy, cellular senescence, and differentiation 
[24-26] (Figure 3). GSH works as a gatekeeper for CSCs to prevent the 
ROS accumulation and maintain the “stemness”. This CD44v-xCT-
GSH axis enables CSCs to survive and proliferate under the redox stress 
conditions.

Importantly enough, xCT-GSH axis is not limited to tumors of 
epithelial tissues; glioma cells are reported to express xCT without 
CD44v and the secreted glutamate is the cause of glioma-associated 
brain edema [27]. Besides, triple negative breast cancer tissues, 
pathologically classified into basal-typed and caludin (low)-typed 
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Figure 2: Redox stress-induced Wnt activation and EMT. ROS stimuli-in-
duced Wnt activation, TGF-β signaling, and EMT-inducing transcriptional 
factors such as Snail, Slug, Twist etc. enhance the invasive and migratory 
phenotype with the cadherin switch and the change in the alternative splicing 
of CD44. The splicing of CD44 mRNA is regulated by ESRP1, the expression 
of which is influenced by epigenetic changes.
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Figure 3: CD44v-xCT-GSH axis in the protection from redox stress. CSCs 
highly express CD44v8-10, which stabilizes xCT (cystine/glutamine) ex-
changing transporter, at the cellular membrane. xCT increases intracellu-
lar cysteine concentration, which leads to enhanced GSH synthesis. CSCs 
maintain ROS under the low level by the promoted GSH synthesis, thereby 
inhibiting senescence, apoptosis and autophagy. Sulfasalazine, a specific 
xCT inhibitor, collapses CD44v-xCT-GSH axis to regulate the redox stress 
in CSCs.
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mesenchymal tumors, highly express xCT and show the “glutamine 
addiction” independently of CD44v expression [28]. Sulfasalazine 
(SSZ), an anti-inflammatory drug long used for patients with ulcerative 
colitis, has been shown to prevent the function of xCT transporter 
[15,23,28,29] and expected to break down the robustness of CSCs 
against redox stress (Figure 3).

Novel therapy attacking the sensitivity to nutrient 
microenvironment of CSCs

EpCAM is expressed in the circulating tumor cells (CTCs) in the 
blood and several neutralizing antibodies have been developed for 
the prevention and the treatment for tumor metastasis [30,31]. For 
instance, catumaxomab is the antibody preparation against human 
EpCAM and CD3 and clinically effective for the patients with advanced 
ovarian tumors with recurrent symptomatic malignant ascites [32]. 
However, it still remains unknown how EpCAM contributes to the 
survival potential of CSCs under oppressive conditions.

In the perspective of membrane-molecular function, EpCAM has 
recently been identified as a sensor of growth factor microenvironment 
by the formation of super-complex with amino-acid transporters [33,34]. 
For example, EpCAM is positively correlated with the expression and 
localization of amino acid transporter L-type amino acid transporter 
(LAT) 1 promotes the uptake of leucine, thereby enhancing mammalian 
target of rapamycin (mTOR) signaling pathway [33,35]. There exists a 
crosstalk between mTOR and 5’-Adenosine monophosphate-activated 
protein kinase (AMPK) signal pathways. In the steady state with 
enough amount of energy, EpCAM-low or-negative cancer cells tend to 
be activated as compared with EpCAM-high CSCs. Serum starvation 
leads to AMPK signal activation exclusively in CSCs in the specific type 
of prostate cancers [33]. In other words, EpCAM exists as an upstream 
molecule for AMPK signal pathway to sense the change of the nutrient 
microenvironment by the formation of super-complex with amino acid 
transporters in cooperation with CD147 (EMMPRIN) and CD98hc 
(the chaperon referred to as 4F2) [34]. 

Thus, it is highly likely that EpCAM expression makes CSCs 
sensitive to the change in glucose and growth factors by the regulation 
of the localization and stabilization of several monocarboxylate and 
amino acid transporters. Prostate cancer cells respond to lack of growth 
factors differently depending on the EpCAM expression amount [33]. 
EpCAM-positive CSCs may rapidly adapt to the change in nutrient 
microenvironment. Long-term serum starvation promotes cell cycle 
arrest and the acquisition of a quiescent phenotype, often observed 
in CTCs. EpCAM-high cancer cells entered the G0 phase via the 
SCF (Fbw7)-c-Myc axis, while EpCAM-low cells via the Skp2-p27 
axis. EpCAM enhances the ability of cells to become dormant under 
long-term serum starvation and promotes cell cycle re-entry from 
this dormancy upon exposure to growth factors. Thus, acquisition 
of dormancy is an important factor of the biological feature of CSCs 
induced by EpCAM expression.

Conclusion
We have briefly introduced the importance of the therapeutic 

strategy targeting the “functional” CSC markers. We strongly hope the 
advancement of the research and therapeutic strategy by uncovering 
how the “stemness” is maintained during the invasion and metastasis 
by those molecules.
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