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Introduction
Apoptosis, an autonomic ordered programmed cell death, is 

generally considered to be of great magnitude both in the modulation 
of growth and differentiation of normal cells and in ablating damaged, 
neoplastic cells and defending against pathogenic infections [1]. 
Carcinogenesis and tumor may arise when the homeostatic balance 
between cell survival and apoptosis is disrupted [2-4].

Being the fifth most common malignancy worldwide, hepatocellular 
carcinoma (HCC) is a major threat to human being [5,6]. Up to date, 
mountains of researches strongly suggest that HCC is highly resistant 
to traditional systemic therapies, at least partially owing to insufficient 
apoptosis [7-9]. Like many other tumors, HCC cells seem to be 
incapable of inducing their own deaths through apoptotic pathway, 
mutant p53 can be frequently accumulated at a fairly high level in HCC, 
which probably endow malignant cells with the ability to counteract the 
effect of multiple anticancer drugs. Molecular alterations in the RAS/
ERKs pathway in HCC cells might contribute a lot to the undesirable 
resistance to apoptotic stimuli. Many HCC cells also show to be less 
sensitive to apoptotic signals induced by death receptor ligands, such as 
FASL. Moreover, some anti-apoptosis proteins such as Survivin, Bcl-xL, 
Mcl-1, and Bcl-2 are over expressed in HCC. The goal of this article is to 
focus on the related researches during the last few years and seek for a 
better understanding of these major molecular changes closely involved 
in the disturbance of apoptosis in HCC (Figure 1). 

p53 and its alterations

Among the most crucial alterations observed in HCC, somatic 
mutations in TP53 have been supposed to be correlated with the 
initiation and progression of this disease [10-12]. Wild-type (WT) p53 
is normally expressed at a low level in the cells and can be activated 
rapidly upon multitudinous intrinsic and extrinsic stresses signals 
including DNA damage, osmotic shock, ribonucleotide depletion, etc 
[13]. Once activated, a cell cycle arrest could be induced to allow for 
DNA repair. Activation of p53 can also initiate cell apoptosis if damages 
show to be severe and irreversible. Such mechanism is important for 
body to maintain internal homeostasis. 

*Corresponding author: Dr. Xian-Jun Qu, School of Pharmaceutical Sciences, 
Shandong University, No. 44, Wen Hua Xi Road, Ji’nan 250012, China, Tel/Fax: 
+86-531-88382490;  E-mail: qxj@sdu.edu.cn

Received Janurary 20, 2011; Accepted March 01, 2011; Published March 04, 
2011

Citation: Yuan Y, Zhang YS, Qu XJ (2011) The Molecular Alterations Regarding 
Apoptosis in Hepatocellular Carcinoma Cells at a Glance. J Carcinogene Mutagene 
2:118. doi:10.4172/2157-2518.1000118

Copyright: © 2011 Yuan Y, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Ranking one of the most critical worldwide health troubles relating to mortality, hepatocellular carcinoma (HCC) 

has been a grievous scourge of humanity for a long time. Despite that plentiful attempts have been made, it still 
remains being a great challenge for us to conquer this disease. Multiple molecular alterations can be frequently 
detected in the pathogenesis and development of HCC, such as members of Ras family, Bcl-2 family and tumor 
suppressors. Importantly, most of these alterations are responsible for disrupting the balance between cell 
proliferation and apoptosis, which has been generally voted as a key event closely associated with carcinogenesis. 
Hence, this review aims to update the current related articles and provide a further understanding about such 
molecular changes relevant to trigger imbalances in the regulation of apoptosis in HCC. 

However, when mutation occurs, the alternated p53 seemingly 
be able to discard the tumor-suppressing functions. Further studies 
have speculated that mutant p53 may grant the ability of escaping 
from apoptosis on malignant cells through redox mechanisms, 
such mechanisms are critical for the survival of hepatocytes during 
transformation and tumor progression [14]. Another possibility is that 
mutant p53 may form the complexes with isoforms of p63 and/or p73, 
inhibiting the biological functions of p63 and p73 [15]. Since currently 
several chemotherapeutic agents require p53 to induce apoptosis, 
disruption in the p53 pathway may finally lead to drug resistance. For 
these reasons, exploration of a way to reactivate and/or repair p53 and 
re-induce apoptosis in response to DNA damage by chemotherapeutic 
drugs may be a hopeful therapeutic strategy for HCC treatment [16-
18]. Enormous efforts have been put into this field over the past few 
years. Some researchers pointed out that arterial administration of 
p53 products or adenoviral delivery of p53 recombinant DNA in mice 
models bearing HCC did not distinctly inhibit tumor growth [19], 
whereas thanks for DePinho and his partners’ work [20], we have 
gradually realized that the effect of p53 deletion in HCC mostly depends 
on the concrete cellular micro-environment, especially telomeres are 
intact or dysfunctional. Data obtained from the related studies give 
us a stark indication that functional ablation of p53 protein might 
contribute a lot to hepatoma cell survival in the context of telomere-
induced chromosomal instability [21].

Ras proteins and related effectors

In recent years, the Ras family have been attractive focuses of 
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intense studies, in large part due to their vital roles in many carcinomas, 
HCC certainly no exception [22-24]. Being a prototypical member of 
the Ras superfamily (more than one hundred members), the Ras family 
show to be critical in modulating diverse range of cell behaviors, such 
as cell adhesion, migration, proliferation, differentiation, and apoptosis 
[25,26]. 

Though extensive researches reveal that point mutations of ras 
oncogenes seem to be quite common in a wide variety of tumors, the 
probability of these events is rare in HCC [27,28]. Further studies 
indicate that it is not mutation of ras genes themselves but a series of 
molecular alterations brought about by aberrant Ras activation in the 
Ras pathway that are closely related to the occurrence and development 
of HCC [27,29]. In the cause of this disease, up-regulated of H-ras 
(one of the most notable proto-oncogenes of the Ras family, owing the 
potential to cause normal cells to become cancerous when mutated) can 
be detected throughout different stages of tumourigenesis, followed by 
a discovery of the overexpressed B-raf (a protein belonging to the Raf 
kinase family of serine/threonine-specific protein kinases, which plays a 
role in regulating the MAP kinase/ERKs signaling pathway) in advanced 
period (Figure 1) [27,29,30]. These misadjusted proteins not only bring 
on increased invasion and metastasis but show to markedly disturb the 
normal apoptotic signal transductions. Besides, the functional loss of 
NORE1A, NORE1B and RASSF1A, some related effectors in the Ras-
mediated pro-apoptotic pathway, can be frequently observed in HCC 
[27,32-36]. Since ongoing studies widely imply that these NORE1A, 
NORE1B and RASSF1A are the novel tumor suppressors and may act 
together to inhibit the mitogenic stimulation induced by Ras promoting 
apoptosis through activation of MST1 kinase [33-36], dysfunction 
of them might contribute a lot to undesirable proliferation as well as 
malignant transformation of hepatocytes. 

Fas and FasL 

Known as a major pathway for the induction of apoptosis in cells 
[37,38], the Fas-Fas-ligand (FasL) system has been studied passionately 
for a long span of time. The cross-linking of Fas with FasL leads FADD 
(Fas-associated protein with death domain) to bind with the death 
domain of Fas, followed by the formation of a complex protein called 
death inducing signaling complex (DISC) and a direct recruitment 
and autocatalytic activation of pro-caspase-8 (and -10) . Within this 
complex, the activation of pro-caspases can be inhibited by a cellular 
protein, FLICE-inhibitory protein (cFLIP). A sequence of biochemical 
cascade reactions result in multiple hallmarks of apoptosis including 
DNA degradation, cytomembrane blebbing, etc. In the upshot, Fas-
bearing cells undergo apoptosis (Figure 1) [39]. This mechanism is of 
great significance not only in immune homeostasis, but also in wiping 
out cancerous cells [40,41].

Unfortunately, HCC cells as well as majority of other tumor cells 
seem to be relatively resistant to Fas/FasL-mediated apoptosis [42]. 

Since Fas/FasL system is a crucial apoptotic signal pathway in the liver, 
resistance to it may be greatly associated with the evasion of immune 
surveillance and tumor progression.

In the past few years, large efforts have been made to elucidate 
the possible mechanisms of this resistance. Many studies have shown 
that the majority of the HCC cells coexpress Fas and FasL, but all 
HCCs show one or more alterations in the Fas-FasL pathway [43]. 
The decreased expression level of Fas and/or downstream molecules, 
such as FADD, accompanied by the up-regulation of some molecules 
known to inhibit the Fas-mediated apoptosis such as soluble Fas (sFas) 
and Fas-associated phosphatase-1 (FAP-1) can be frequently detected 
in HCC [42,44]. These accumulating findings strongly imply that the 

molecular alterations in the Fas/FasL pathway might enable hepatoma 
cells to escape from apoptosis. Therefore, it at least partially has to do 
with the pathogenesis of HCC.

However, despite that Fas/FasL system has been well studied 
after years of painstaking research and impressive results are already 
obtained in animal models, the clinical use of them for cancer 
treatment is still being a limitation given the potential severe toxicity 
[45,46]. But anyhow, involvement of this system leastways gives us a 
better understanding of the progression and development of HCC and 
one day people would hit on an ideal therapeutic regimen based on 
reinforcing Fas/FasL interaction or the apoptotic pathway.

Survivin and its dark side

Survivin is a recently described member of the inhibitor of 
apoptosis protein (IAP) family whose gene is ranked amongst the top 
five most tumor-specific genes in the human genome [47,48]. It is highly 
expressed during embryonic development but not in most adult tissues 
and cancer-adjacent normal tissues. However, when cancer occurs, 
significantly increased expression of Survivin could be obviously 
detected [49-51]. Up to now, a number of researches have been carried 
out to investigate the expression of Survivin and its relationship with 
apoptosis and proliferation in HCC. Homologous results show that 
there is a noticeable up-regulated expression of Survivin in HCC cells 
compared with that in adjacent cirrhosis tissues and normal tissues and 
increased protein expression level is markedly associated with the ratio 
of proliferative index to apoptotic index [52-54]. 

Analysis of the cell cycle after transfecting Survivin into 
hepatocellular carcinoma cells revealed that among all the tested cell 
lines, over expression of Survivin brought about a marked decline 
in G(0)/G(1) phase and an increase of S phase resulting in a growth 
dominance for cancer cells [55]. Thus together with the finding that 
knockdown the expression of Survivin by RNAi remarkably induces 
apoptosis and inhibits proliferation in HCC cells [56], which gives us 
an explicit enlightenment that this protein is positively associated with 
anti-apoptosis in HCC.

Objective researches implicate that Survivin protein can function 
as a dominant regulator of cell death and proliferation, controlling 
cell apoptosis through physically binding to downstream caspase-3 
and caspase-7, and then inhibit activation of these proteins and/or act 
somewhere downstream of Bax and Fas-induced apoptosis signaling 
pathways to block Bax and Fas-induced apoptosis.This step can be 
suppressed by the X-linked IAP (XIAP) antagonist, Smac/DIABLO, 
which is released from the mitochondria and can relieve this inhibition 
and allow for apoptosis to proceed (Figure 1) [51,52]. Accordingly, thus 
it is reasonable to hypothesize that the over expression of Survivin is 
at least partially responsible for that malignant cells are able to escape 
from apoptosis and proliferate in a rapid manner. 

Even though more works are still required to make clear about 
how Survivin produces its effects in the complicated process of cell 
apoptosis, at least we have realized its causal role in tumorigenesis. 

Bcl-2 proteins

 Among multitudinous regulators of internal apoptotic pathway 
known to date, an important family can never be overlooked. 
Comprised by more than 20 leaguers, the B cell lymphoma 2 (Bcl-2) 
family have been identified to be crucial to adjust cell apoptosis and 
promote normal growth [57]. Based on the number of Bcl-2 homology 
(BH) domains they contain, this family can be grouped into three 
sub-families. The first sub-family includes the anti-apoptotic multi-
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domain proteins Bcl-2, Bcl-xL, myeloid cell leukemia-1 (Mcl-1), etc, 
characterized by containing four Bcl-2 homology (BH) domains with 
a hydrophobic binding cleft formed by domains 1-3 or three BH1-
BH3 domains and a BH4-like helix. The next two groups show to be 
pro-apoptotic sharing three BH (BH1-3) domains, such as BAX (Bcl-2 
associated X protein), BAK(Bcl-2 antagonistic killer), or only the BH3 
domain, such as Bim (Bcl2-interacting mediator of cell death), Bid 
(BH3-interacting-domain death agonist), and Bad (Bcl-2-associated 
death promoter). These proteins might exert their pro- or anti-apoptotic 
effects via governing the activation/inactivation of the mitochondrial 
permeability transition pore (MPTP) [58,59]. For instance, anti-
apoptotic multidomain proteins could prevent the activatoin of MPTP 
and cytochrome c release, thus preventing downstream effectors 
activation and cell apoptosis. On the other hand, pro-apoptotic multi-
domain proteins can be activated by BH3-only proteins, which display 
sequence homology only with the BH3 domain and act as the sensors of 
the death signal, triggering the activation of MPTP and the subsequent 
release of cytochrome c. Then released cytochrome c might engender 
activation of a whole string of downstream molecules, such as caspase-3 
and caspase-9. Once there, targeted cells are difficult to escape from 
dismantlement (Figure 1) [59-61]. 

At present, a smart few works have emerged the Bcl-2 family 
as a dominant factor relating to genesis and progression of many 
tumors [62,63]. In HCC, members of the family usually show to 
be maladjusted [64,65]. Take Bcl-2 as example, being the founding 
member of anti-apoptotic proteins in the family, Bcl-2 is frequently 
detected to be over expressed in the disease progression. Similar cases 
can be seen in its siblings including Bcl-xL and Mcl-1 [66-68]. At the 
same time, expressions of some pro-apoptotic proteins appear to be 
down-regulated, such as Bax and Bid [60,69]. Together, these findings 
demonstrate that Bcl-2 family might be another attractive and coming 
subject of researches about HCC.

TNF-α 

A growing body of epidemiological and clinical data supports 
the concept that there is a causal relationship between inflammation 

and cancer [70,71]. As persistent exposure to a wide variety of risk 
factors (hepatitis viruses, intermediates of alcohol metabolism, drugs, 
etc) could elicit the cellular immune response infection, so chronic 
inflammation may have a causative role in hepatocarcinogenesis 
[71,72]. More and more inflammatory cytokines have been received 
considerable interest, among which tumour necrosis factor-α (TNF-α) 
is the especially noteworthy one. 

Being expressed by diverse kinds of cells comprising activated 
macrophages, NK-cells, T-lymphocytes, keratinocytes, neutrophils, 
and tumor cells, TNF-α is a well characterized cytokine with a vital 
role in wide-ranging biological effects [73]. It could exert the biological 
functions by binding two homotrimeric receptors, TNF-receptor 
1 (TNF-R1) and TNF-R2. Binding of TNF to TNF-R1 results in the 
release of the inhibitory protein silencer of death domains (SODD) 
from TNF-R1’s intracellular domain and the recruitment of the death 
domain-containing adapter protein TRADD (TNF receptor associated 
death domain) with the death domain-containing serine–threo-nine 
kinase RIP (receptor interacting protein), followed by an indirect 
recruitment of TNF-R2 in the TNF-R1 signaling complex and the 
activation of complex downstream signaling pathways, such as nuclear 
factor κB (NF-κB), c-Jun N-terminal kinase (JNK), and caspase [74,75]. 
Transformed hepatocytes seem to disturb such singaling and breakdown 
the liver homeostasis. Data from Knight B et al in 2000 suggested that 
TNF signaling was invloved in the proliferation of hepatic stem cells 
during the preneoplastic phase of hepatocarcinogenesis and that loss of 
this signaling reduced the incidence of tumor formation in the TNF-R1 
knockout mice model [76], and therefore TNF-α might provide a 
molecular bridge between inflammation and cancer. Desipte that much 
work is reqiured to reduce the toxicity for systematic administration, 
TNF-α still shows the potential to be a cancer therapeutic during the 
early stages of liver carcinogenesis.

Conclusions
In summary, overwhelming evidence has strongly suggested that 

there is a close association between dysregulation of cell apoptosis and 
the pathogenesis of HCC. Failure of apoptosis might allow the survival 

Figure 1: The diagram of servaral main apoptotic signal pathways in HCC.

RTK

Ras

Raf

MEK1/2

ERKs

Survival genes

JNK

TRADD-TRAF2-RIP

Inflammation

TNF-α

TNFR-1

ASK1

MKK4,7

IKKKS

IKK

NF-κB

Caspase-8,-10

Fas

FasL

DISC

Bid

Mitochondria

BaX, BaK

Smac/DIABLO 
Bcl-2, 
Mcl-1,
Bcl-xL

Cyt C
Apoptosome

IAPs

Apoptosis

Caspase-3,-6,-7

AREmdm2

p53

Growth factors

Nucleus



Page 4 of 5

Volume 2 • Issue 2 • 1000118
J Carcinogene Mutagene     
ISSN:2157-2518 JCM, an open access journal 

Citation: Yuan Y, Zhang YS, Qu XJ (2011) The Molecular Alterations Regarding Apoptosis in Hepatocellular Carcinoma Cells at a Glance. J 
Carcinogene Mutagene 2:118. doi:10.4172/2157-2518.1000118

of malignant cells, thus being liable to interrupt the normal growth. 
Notwithstanding that lots of risk factors related to HCC have been 
well studied, a jillion relevant molecular alterations compromising 
the balance between HCC cell death and survival are still needed 
further research. A better understanding of them is required for the 
development of optimal apoptosis-targeted treatment strategies. Taken 
altogether, over-activation of anti-apoptotic signals and inhibition of 
pro-apoptotic molecules can be frequently observed in this annoying 
disease. Regulation of these dysfunctional signals of apoptosis in HCC 
may consider as the choice for treatment of HCC. Although there is 
much work to be done still and no efficient method existed at present, 
no one doubts that success is on the way. 
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