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ABSTRACT

Metal-on-metal total hip arthroplasty prostheses are known to release Cobalt and Chrome (CoCr) debris. The 
local accumulation of these ions and nanoparticles can cause adverse local tissue reaction, which can ultimately 
determine a negative outcome for patients. The aim of our systematic review was to report the latest evidence on the 
effects of CoCr particles on local soft tissue with a focus on its clinical relevance. PubMed, Embase, and Cochrane 
Library databases were screened to perform an extensive review. PRISMA guidelines were applied, and the risk of 
bias was assessed, as was the methodological quality of the included studies. 27 studies were included after applying 
the inclusion and exclusion criteria. 3 were human ex-vivo studies, 24 were preclinical studies, including 21 in vitro 
and 3 in animal models. The presence of metal ions results in cell damage by reducing cell viability, inducing DNA 
damage, and triggering the secretion of cytokines, which are responsible for the inflammatory reaction observed in 
ALTR. CoCr particles released from MoM implants can cause damage to skeletal muscle, the capsule, and provoke 
osteolysis and inflammation. The cytotoxic and genotoxic damages, as well as the interaction with the immune 
system, affect the success of the arthroplasty and lead to a higher rate of revision surgeries.

Statement of clinical significance: Ions released from the wear of Metal-on-Metal implant are significantly associated 
with soft tissue damage, and other local adverse reaction. Multiple mechanistic reasons are proposed.
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INTRODUCTION

Total Hip Arthroplasty (THA) is one of the most successful, and 
frequently performed, surgical interventions in orthopaedic surgery 
[1,2]. Metal on Metal (MoM) THA prostheses were developed 
to face the need for bearing surfaces with lower wear, which can 
ultimately last longer without the need of revision [3,4]. However, 
despite MoM implants showing improved corrosion resistance 
compared to alternative articulation surfaces for THAs, it has been 
documented that the components of MoM prostheses, when in 
contact with host tissue and joint fluid, undergo tribocorrosion 
due to the combined action of mechanical loading and chemical 
corrosion [5]. As a result of this corrosion, soluble ions and wear 
particles (namely Cobalt (CO) and Chromium (Cr)) are released 
in the area surrounding the implant and into systemic circulation 

These particles are increasingly recognized as both local and 
systemic toxic substances [12] based on the alterations to native host 
tissues they produce and the increased presence of chemokines and 
cytokines due to the continuous recall of macrophages in response 
to their presence [13-16]. Strong evidence has confirmed that the 
local toxicity of these particles and ions is associated with Adverse 
Local Tissue Reaction (ALTR), Adverse Reaction to Metal Debris 
(ARMD), inflammatory pseudo-tumors and local osteolysis [8,16-
20]. Although these diseases may partly explain the higher revision 
rates of MoM prosthesis, low-grade inflammation seems to be 
contributing to the development of loosening via a Trojan horse 
mechanism [12,21-23] in which neutrophils and macrophages work 
as a vector for translocation of bacteria from body site to the surgical 
site. However, evidence about the correlation between levels of 

[6-11].
bacterial metabolites and joint deterioration is still inconclusive. 
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The goal of this paper is to describe the influence of cobalt and 
chrome ions on the peri-prosthetic area; identify how immunological 
activation is associated with increased levels of wear debris; and 
evaluate the risks of implant failure caused by tribocorrosion. 

Specifically, we asked three questions: 

1) What are the local effects of cobalt and chrome particles released 
from MoM prosthesis?

2) Do increased levels of cobalt and chrome particles affect the 
success of the arthroplasty?

3) What are the mechanisms that may lead to early implant failure?

MATERIALS AND METHODS

Study search strategy

This systematic review was conducted according to the guidelines 
of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses [24]. A comprehensive search was performed using three 
medical electronic databases (PubMed, EMBASE, and Cochrane 
Library) by two independent authors (IZ and SS) from January 
2000 to January 3rd, 2022. To achieve the maximum sensitivity 
of the search strategy, we used the following string (cobalt AND 
(chrome OR chromium)) AND (local* OR muscle OR tendons 
OR ligaments OR (soft tissue) OR bone) AND (toxicity OR 
adverse) AND (implant OR prosthesis OR prostheses OR (total 
joint arthroplasty) OR (total knee arthroplasty) OR (total hip 
arthroplasty)) as either keywords or Medical Subject Heading terms.

The reference lists of all included articles, previous reviews on the 
topic, and top hits from Google Scholar were reviewed to further 
identify potentially relevant studies, which were assessed using 
the inclusion and exclusion criteria. To avoid overlap with other 
ongoing review studies, we searched PROSPERO for any similar 
reviews.

Selection criteria

Eligible studies included those investigating the influence of 
MoM implant, wear particles and Cobalt Chrome ions on local 
osteoarticular tissues and surrounding soft tissues (e.g. tendons, 
capsule and muscles). The titles and abstracts were screened by 
including only clinical studies with any level of evidence published 
in peer-reviewed journals reporting clinical results in English. 
We excluded studies reporting only clinical results without 
investigating the topic mechanistically. Additionally, we excluded 
studies in which data were not accessible or missing, those without 
an available full-text article. We also excluded duplicates and 
studies with poor scientific methodology, assessed through validate 
risk of bias assessment tool (i.e., SYRCLE tool [25] and ROBINS 
[26]). Abstracts, case reports, conference presentations, reviews, 
editorials, and expert opinions were excluded. Two authors (MP and 
IZ) performed the search and evaluated the articles independently. 
An experienced researcher in systematic reviews (EC) resolved 
cases of doubt. First, each investigator read the abstracts of all 
articles, selected relevant articles according to the inclusion and 
exclusion criteria, and compared the results with those of the other 
investigators. After 4 weeks, the same studies were read again to 
ensure the investigators agreed about article selection. There was 
no disagreement among the investigators. One investigator (SS) 
extracted data from the full-text articles into an Excel spreadsheet 
with structured tables to analyze each study descriptively. Another 
investigator (CAK) independently double-checked the primary data 

Figure 1: PRISMA flowchart.

from all articles. Doubts and inconsistencies were grouped and 
resolved.

Data extraction and criteria appraisal

Data were extracted from article texts, tables, and figures using 
the Population, Intervention, Comparison, Outcome framework 
[27,28] and included the title, year of publication, study design, 
sample size, study population, patient characteristics, intervention 
and comparator group (where applicable), outcomes, findings, and 
conclusions. Two investigators (IZ and MP) independently reviewed 
each article. Discrepancies between the two reviewers were resolved 
by discussion and consensus.

Risk of bias assessment

A risk of bias assessment of all included clinical studies was performed 
according to the ROBINS risk of bias tool [26] (Supplementary 
materials). This assessment used “low”, “moderate” and “high” as 
judgement keys. “Low” indicated a low risk of bias, “moderate” 
indicated a moderate risk of bias, and “high” indicated a high 
risk of bias. The assessment was performed by two authors (IZ 
and MP) independently. The inter-rater agreement was 89%. Any 
discrepancy was solved by consensus. The articles were considered 
to have a moderate (eight articles) or low risk of bias (14 articles). 
We excluded one article because of a serious risk of bias.

Study selection

The initial study search resulted in 560 studies. After reading the 
abstract and title and abstract and removing duplicates, we selected 
45 for full text reading. Ultimately, we selected 15 articles for 
analysis excluding 30 articles because of topic different (n=26), the 
article was a review outdated (n=3) and because of a serious risk of 
bias (n=1) (Figure 1). 15 studies were included after applying the 
inclusion and exclusion criteria. 5 were in vitro human studies. 10 
were animal model studies, including 6 in vitro and 4 in vivo. 

Statistical analysis

After extracting the data, continuous data was presented as mean 
and categorical following the authors preference. As per Cochrane 
handbook, we initially evaluated the possibility of a meta-analysis, 
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however, after reviewing the data and the heterogeneity of 
outcomes, follow up, and assessments, together with unreported 
data we reconsidered our design. Thus, descriptive analysis was 
performed.

RESULTS

Immunological activation

Cobalt and chrome released from MoM implants are associated with 
the activation of the immune system in the tissues surrounding the 
prosthesis and the production and migration of pro-inflammatory 
cytokines, prostaglandins, Reactive Oxygen Species (ROS), 
degradative enzymes and other factors [29-33]. 

Five studies analysed the immunological response to metal debris 
in animal models [13,15], and human samples [14,16,33]. In vitro, it 
was found that Co2+ and Cr3+ ions cause a significant migration of 
TCR+ lymphocytes and CD19+ (p=0.020) [13], as well as changes in 
the production and secretion of pro-inflammatory cytokines, such 
as Interleukin-8 (IL-8) and Monocyte Chemoattractant Protein 1 
(MCP-1) by macrophages and osteoblasts exposed to wear debris [13-
16]. Similar results were reported by Trindade et al. [14] and Matsui 
et al. [34] showing that macrophage activation can be induced by 
inflammation enhancement through Interleukin-6 (IL-6), Tumour 
Necrosis Factor α (TNF-α) and Interleukin-1 (IL-1), all of which 
were elevated by Co2+ and Cr3+ ions. In addition, it was observed a 
dose-dependent increase in TNF-α release in mouse macrophages 
after being exposed to Cr3+ and Co2+ (p<0.001) and Macrophage 
Inflammatory Protein 1α (MIP-1α) [13]. Because of the role of 
MIP-1 α as chemotactic agent for monocytes and macrophages, 
Tc lymphocytes, B lymphocytes and NK cells, it could be that this 
protein is one of the key elements responsible for the inflammatory 
response to cobalt and chrome ions. 

Effects on bone metabolism

The effects of Co and Cr wear debris are associated with a greater 
risk of periprosthetic osteolysis by altering osteoblast function and 
by stimulating bone reabsorption through osteoclasts activation. 
The autocrine and paracrine regulation of cytokines may condition 
the functions of bone cells. 

An in vitro study 16 investigated the effect of cobalt ions on primary 
human osteoblasts and demonstrated that metal particles induce 
an enhanced secretion of immediate-early stress chemokines IL-8 
(p<0.005) and Monocyte Chemoattractant Protein 1 (MCP-1) 
(p<0.005), which ultimately result in migration of neutrophils 
(p<0.001) and monocytes (p<0.001). The dose-dependent release 
of such pro-inflammatory cells [3,35] and Prostaglandin E2 
(PGE2) [36,37] contributes to osteolysis by recruiting leukocytes 
and osteoclastic cells to the periprosthetic area and by increasing 
osteoclast differentiation [16]. Studies also observed that cobalt 
and chrome ions interfere with osteoblast function, further 
contributing to osteolysis by suppressing osteogenesis [7] and by 
altering the differentiation process of Mesenchymal Stem Cells 
(MSCs) [38]. 

Finally, Receptor Activator of Nuclear factor k-B Ligand (RANKL) 
expression was shown to be enhanced in the presence of Co and Cr 
ions [17,18]. On the other hand, one study 15 pointed out that the 
osteolytic mechanism might not be mediated by RANKL-RANK 
pathway, but rather caused directly by inflammatory cytokines. The 
evidence supporting the association between metallic wear debris 
and bone reabsorption is overall based on moderate quality of 

evidence, with a total low to moderate risk of bias. 

Effects on soft tissues

The presence of cobalt and chrome wear particles in the peri-
prosthetic area was associated with an increased incidence of 
inflammatory reactions [7,8] and periarticular soft-tissue damage. 

Multiple clinical studies found higher serum [7,8] and peri-implant 
accumulation of chrome and cobalt ions compared to controls 
[8,33] in patients with inflammation of the tissue surrounding 
the MoM implants. In addition, a trial carried out on a mouse 
population proved a particle-dependent pseudotumor-like tissue 
formation [2]; the dose-dependent nature of such process has been 
confirmed by other preclinical trials [39]. Co2+ ions were found to 
be the main culprit for inducing histological damage [1,33,40,41] 
with deleterious effects including: the necrosis and infarction of 
connective tissues [1,3], diffused lymphocytic infiltrate [2,8,33] and 
scattered aggregates of metal particles within necrotic macrophages 
[2,8,33,42]. Nevertheless other studies claim for the equal role of 
both cobalt and chrome in determining oxidative damage and 
tissue degeneration [33]. One in vitro study [39] found that human 
fibroblasts, exposed to CoCr ions, were induced by those particles 
to transition into a hypoxia-like state, therefore releasing free 
radicals and causing further tissue damage. 

However, patients’ characteristics, such as different PDs (Population 
Doublings, a molecular index of cellular senescence), [43] as well 
as implant peculiarities, such as a lower loading surface [44] were 
found to be variables that may affect the soft tissue degeneration 
process. 

DISCUSSION

In our review we report evidence of an association between metallic 
debris released from MoM implants and an increased incidence of 
inflammatory reaction [13-16], osteolysis [3,7,35,45] and damage to 
the skeletal muscle [33,39,40]. While, the toxicity of metal implants 
has been confirmed both in vitro and in vivo studies, controversial 
data exist on the causal relationship between a high Co2+, Co3+, 
and chrome ions concentration and local damage. What emerged 
from our analysis is that all studies are unanimous in affirming that 
the type and extent of the biological response are dose-dependent to 
the ion levels deriving from the process of tribocorrosion occurring 
over time in MoM implants, thereafter higher ion levels can cause 
greater and more serious reactions.

Cr3+ and Co2+ and risk of adverse local reactions

Our findings suggest that immunological modifications are 
associated with a higher risk of adverse local reactions. The exposure 
of periprosthetic tissues to byproducts of wear is associated with 
morphology changes in macrophages [14,33], immunological 
activation with secretion of chemotactic agents [13-16], T-cell 
lymphopenia (p=0.024) [46] and hypersensitivity [13], resulting in 
a massive production of pro-inflammatory cytokines including IL-
1, TNF-α, IL-2, Interferon (IFN), and RANKL [34,47,48]. Scharf 
et al. [33], through histological analysis of periprosthetic tissue 
taken during hip revision surgeries, demonstrated a macrophagic 
and lymphocytic infiltrate in the perivascular space which are often 
associated with tissue necrosis/infarction; similar results were 
reported by other works [2,8]. 

The exposure of macrophages to Co2+ ions can induce alterations, 
such as a metabolic shift from oxidative phosphorylation to aerobic 
glycolysis, through the stabilization of HIF-1 α (hypoxia inducible 

J Allergy Ther, Vol.13 Iss.2 No:100027  1



4

Zais IE, et al

factor 1α), possibly playing a key role in the pro-inflammatory 
response [49]. The activation of HIF-1 α normally occurs in hypoxic 
conditions to assure cell survival and it promotes the formation 
of new blood vessels as well as haematopoiesis [37,50]. As a 
consequence to the stabilization of hypoxia inducible factor due to 
cobalt ions, an increased production of IL-1, TNF-α and Vascular 
Endothelial Growth Factor (VEGF) was observed: these data, taken 
altogether, suggest that hypoxic stress induced by cobalt can induce 
cell death.

The combination of metal ion toxicity and hypersensitivity could 
explain the onset of necrosis, Aseptic Lymphocytic Vasculitis-
Associated Lesion (ALVAL), ALTR or Adverse Reaction to Metallic 
Debris (ARMD) [19,51,52]. While metal ion toxicity mechanisms 
have been widely investigated, the molecular pathway(s) that lead 
to metal hypersensitivity reactions are still not clear: apparently the 
ion can conjugate with the HLA-peptide complex and generate 
structural modifications that are subsequently recognised by T-cell 
receptor, triggering the immune reaction [53]. 

Ultimately, a growing body of evidence showed a common 
feature in the periarticular tissues when high levels of Co and 
Cr ions are present the collection of lymphocytes and increased 
vascularity, characteristics that are usually associated with type IV 
hypersensitivity. It is these changes that lead to the formation of 
pseudo-tumors found surrounding MoM implants. 

We strongly encourage further human studies on the mechanisms 
that underly metal hypersensitivity reactions, to assess their role in 
the pathogenesis of ARMD, ALVAL and ALTR, in order to find 
potential molecular targets. 

Cr3+ and Co2+ and risk of aseptic loosening

Aseptic loosening was found to be the main cause to implant failure 
for MoM THA implants [12,54,55] and it was seen to be dependent 
on a variety of immunological modifications that induce osteolysis, 
as well as damages to the skeletal muscle and the capsule. Debris 
travelling in the joint fluid can react with any area of the bone and 
is capable of activating macrophages to initiate an inflammatory 
reaction, which finally endanger long-term implant stability. 

As emerging studies are confirming, the mechanisms by which metal 
ions may cause osteolysis are indirect: the raise of cytokines, such 
as IL-1, IL-6, PGE2, RANKL and TNF-α, is the main responsible 
for stimulating osteoclast activation [14,15], altering MSCs 
differentiation [35] and inhibiting osteoblast activity [7]: when 
there is insufficient bone to sustain standard loads, the residual 
bone is more likely to withstand ulterior damage. The metallic 
ions, through cytokines, are also able to enhance the binding 
activity of the RANK-ligand to the RANK receptor on osteoclasts, 
promoting bone reabsorption [17,18]. In addition Cr3+ and Co2+, 
known as genotoxic agents [56], can inhibit type-1 collagen gene 
expression from osteoblastic cells [36], preventing them from 
rebuilding new bone. Thereby, debris from the wear of MoM THA 
implants results in a local chronic inflammatory and foreign body 
reaction, which may lead to persistent synovitis resulting in joint 
pain and swelling, periprosthetic osteolysis, implant loosening and 
pathologic fracture, ultimately turning out in revision. 

In order to describe the pathogenesis of these clinical findings, 
numerous in vitro and in vivo studies, mentioned above, proved the 
correlation between ions released from MoM implants and their 
failure. In vitro studies were unanimous in affirming the cytotoxic 
and genotoxic effects of CoCr ions, while in vivo studies remain 

speculative, due to the characteristics of patients which constitute 
themselves a elevate risk of bias, considering their comorbidities 
and their different PDs [43]. 

Cr3+ and Co2+ and risk of infection

Although being uncommon, infections represent a cause of revision 
or resection arthroplasty. The pathogenesis of this serious event 
consists of interactions among the implant, the host’s immune 
system and the microorganism involved. 

Revisions due to infections were analysed [12,21,23,55,57], and 
an interesting finding of our work was that emerging studies 
claimed that the periprosthetic accumulation of neutrophils 
might cause infection via a “Trojan horse” mechanism [21-23] 
and therefore partly explain the higher rates of infection in MoM 
implants. The aforementioned immunological alterations, due to 
metallic debris, lead to increased production of pro-inflammatory 
chemokines and cytokines, which trigger augmented endothelial 
synthesis of Vascular and Intercellular Adhesion Molecules 
(VCAM and ICAM), as well as vascular permeability, allowing 
cells to escape to the extravascular compartment [58,59]. If these 
changes occur, neutrophils engulfed with intestinal MRSA 59 
can travel to periprosthetic tissues, possibly provoking Prosthetic 
Joint Infection (PJI) [21-23,55]. Membrane-permeable antibiotics, 
according to evidence, seem to be efficient against PJI caused by 
a Trojan Horse mechanism by killing intracellular pathogens [23]. 
The low-grade inflammation cascade, which may find its origin 
in altered gastrointestinal microbiome [60], likely plays a pivotal 
role for macrophages and leucocytes migration, from the gut to 
the implanted joint [21,61]. Therefore, our findings should spur 
further efforts to investigate the mechanisms that underlie toxin 
translocation and attention should be focused on the microbiome 
as a potential therapeutic target.

CONCLUSION

The generation of metallic debris from MoM THA prostheses is 
inevitable, due to the repetitive cyclic loading of their components 
during use. Our review confirmed that cobalt and chrome ions are 
implicated in the symbiotic activation of innate immune system 
as well as the adaptive immune system: these reactions lead to 
progressive inflammation and osteolysis, ultimately resulting in 
implant failure and surgical revision. We strongly suggest further 
research into the pathogenesis of ARMD, early diagnosis and non-
operative biological interventions that could prevent the onset of 

complications and prolong the lifetime of the joint implant devices.
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