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ABSTRACT

Commonly-used screening techniques for determination of biosurfactants production by microorganisms include 
haemolysis assay, generally depicted to confirm the ability of microorganisms in production of biosurfactants. 
Diameters of zones of haemolysis surrounding microbial colonies are considered as quantitative indication of 
biosurfactant production whereas; haemolytic reactions on blood agar plates are specifically associated with 
pathologic types of erythrocyte lysis by microorganisms, due to haemolysins production. Haemolytic microorganisms 
can destroy erythrocyte membranes, by compromise in integrity of cytoplasmic membranes, through pore-forming 
mechanisms, multiple-hit mechanism, formation of sphaerocytes, derangement of membrane integrity, detergent-
like action, or lipase activity. Relative levels of acute toxicity, cell invasiveness and virulence factors, which can 
make biosurfactants become opportunistic pathogens that use haemin or haemoglobin as a source of iron, have 
also been reported. Haemolysins are further classically defined as exotoxins that can be thermostable, and can 
cross membranes of microorganisms. Haemolysis assay thus, identifies haemolytic microbial strains with lytic, 
pathogenic, toxigenic, and/or virulent potentials, rather than biosurfactant-producing potential, as the assay 
does not correlate particularly with specific characteristics of biosurfactants’ production. However, based on new 
insights and perspectives appropriately extrapolated for the first time in this report, microbial haemolysis assay is 
considered, the easiest, most-economical, non-animal-based, highly-determinative, reliable and sensitive biosafety 
selection criterion protocol, for selection of safe and environmental-friendly biosurfactant candidates, for the 
petroleum industries’ process conditions.
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INTRODUCTION

Microbial surfactants (biosurfactants) are one of the wide ranges 
of extracellular compounds that are produced by microorganisms, 
particularly, bacteria and fungi (yeasts, moulds and mushroom), 
more especially when grown on hydrophobic substrates. They 
are surface-active microbial amphiphilic compounds, which are 
produced on living surfaces, mostly, on microbial cell surfaces or 
excreted as extracellular hydrophobic and hydrophilic moieties. 
These characteristics thus, confer on the biosurfactants-producing 
microorganisms, the ability to accumulate between fluid phases, 
and also possess the characteristic property for reducing surface 

and interfacial tension, at surfaces and interfaces respectively. By 
accumulating at the interfaces of immiscible fluids, biosurfactants 
have been reported to be able to increase the solubility, 
bioavailability and subsequent biodegradation of hydrophobic or 
insoluble organic compounds [1-10]. However, biosurfactants use 
similar mechanisms to the chemical surfactants but mostly with 
certain more established advantages [11-13].

In addition to having many unique properties and applications, the 
ability to exhibit biosensoactives (surface‐ active) properties, which 
lower the surface tension and the interfacial tension of their growth 
media, allow biosurfactants to play diverse key beneficial roles [13-
28]. Furthermore, the vast structural diversities that characterise 
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biosurfactants, may also explain the reason for their continual 
intrigue to scientific interests [16,29,30]. Increased environmental 
awareness has been the main driver for the search of biosurfactants, 
as replacement for chemical surfactants [2,13,24,29-34].

LITERATURE REVIEW

Benefits and applications of biosurfactants in petroleum 
industries

Biosurfactant production is considered one of the key technologies 
for development in the 21st century, and biosurfactants are widely 
applicable in almost every area of human endeavours, especially 
in the field of petroleum technology and processes. Specifically, 
due to their efficacy as dispersion and remediation agents, 
biosurfactants have several potential applications across the oil-
processing chains, and in the formulations of petrochemical 
products, microbial enhanced oil recovery, anti-corrosives; biocides 
for sulphate-reducing bacteria; emulsification and emulsified fuels; 
de-emulsification; oil waste treatment; enhancement of crude 
oil transportation through pipelines; crude oil spill clean-ups/
bioremediation of crude-oil polluted soils; including the removal of 
crude oil from contaminated soils and water bodies by indigenous 
microbes, biodegradation. Some other benefits of biosurfactants 
are environmental remediation processes like- oil storage bottom 
sludge tank cleaning; sediment remediation, soil washing and soil 
flushing, extraction of bitumen from tar sands, and extraction of 
hydrocarbon compounds from oil shales, in order to utilise them 
as a substitute for petroleum energy fuel [10,12,16,17,22,24,35-86].

Biosurfactants being diverse amphiphilic molecules, 
with wide structural and functional diversities, 
and because great diversity also exists a m o n g  
biosurfactant roducing microorganisms, there is adoption of 
different screening techniques for their determination; although, 
almost all the screening methods can give qualitative and/or 
quantitative results [87-93]. 

Some screening methods for biosurfactant production, which are 
basically automated and/or miniaturised rapid-screening assays, 
are available in present times. However, t h e  
major regular direct and indirect biosurfactants screening 
assays are presented in Figure 1 [19,88,58,90,93,94-122].

Screening assays for selecting biosurfactant-producing 
microorganisms

Each biosurfactant screening method, as presented in Figure 1, has 
its advantages and disadvantages; so, a combination of different 
methods has been suggested as appropriate for successful screening 
of biosurfactants [15,87,88,121,123]. In addition to the physiological 
nature of the biosurfactant-producing microorganisms, screening 
for biosurfactant producers somehow depends, both on the type 
of carbon source(s) present, and also the types and amounts of 
other nutrients in the screening media [92,124-130]. The screening 
medium used will therefore, tremendously influence production or 
non-production of biosurfactants; and also influence the type and 
amount of biosurfactants produced [19].

Haemolysis assay in biosurfactant determination

It was reported that haemolytic activity of biosurfactants was first 
discovered when Bernheimer and Avigad [131] recorded that 
surfactin, the biosurfactant produced by B. subtilis, lysed erythrocytes. 

Afterwards, haemolysis assay for biosurfactant determination was 
also reportedly developed by Mulligan et al. [96]. Following the 
development of haemolysis assay for biosurfactant determination, 
Carrillo et al. [106] also claimed to have discovered an association 
between haemolytic activity and surfactant production. Several 
studies similarly reported the impossibility of biosurfactant 
production without haemolytic activity, as haemolysis has been 
referred to as a determination of biosurfactant [87,106,113,121,131-
134]. Whereas, as summed up by Kabir et al. [25], very few 
bacteria would have the selective advantage of lysing erythrocytes, 
yet haemolysis test has always been considered an ideal assay for 
determining surfactant production, as it is commonly claimed 
that biosurfactants cause lysis of erythrocytes, and this is usually 
the principle adopted in the haemolysis assay for biosurfacts 
determination.

In several studies on biosurfactants, haemolysis assay on blood agar 
plates has always been an exclusive experimental screening method 
to monitor biosurfactant production [19]. Based on the reference 
that biosurfactant-producing capacity in liquid medium was 
found to be associated with haemolytic activity, the use of blood 
agar lysis (haemolysis assay) was considered and recommended 
as appearing to be a good primary (and in few cases, secondary) 
screening criterion/method for biosurfactant production, by 
surfactant-producing microbial strains, and regarded as indicative of 
biosurfactant production [16,19,25,87,88,96,102,106,113,117,135-145].

Preparation of blood agar for haemolysis assay

Blood agar is an enriched and differential solid growth medium 
with general composition of-blood agar peptone: 10 g/l; yeast 
extract: 3 g/l; NaCl: 5 g/l; blood: 100 ml/l (as the basal medium), 
of which specified mls. of human or animal (rabbit, sheep, horse 
or cattle) blood is added, for the growth of many microorganisms, 
especially, the fastidious microorganisms (i.e., microbial species 
that do not grow easily on general purpose culture media, which 
are microbial culture media that lack special nutrients). Firstly, 
for haemolysis assay, the isolated microbial colonies may be sub-
cultured from primary plates, by four-corner streaking or repeated 
microbial colony transfers (for mostly fungal isolates) on appropriate 
sterile culture media, in order to obtain pure microbial cultures. 
The pure microbial cultures can then be inoculated on any of the 
various modified blood agar plates, such as, Zobell marine medium 
supplemented with 5% fresh human blood [121]. Other basal 

Figure 1: Common direct and indirect non-automated biosurfactants 
screening assays.
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culture media to which human or animal blood can be added, in 
order to prepare blood agar include, blood agar base, tryptone soy 
agar, nutrient agar, plate count agar, Mueller-Hinton agar, potato 
dextrose agar, Sabouraud dextrose agar, etc.

Inoculation of blood agar plates is usually followed by incubation 
at 25-37°C for 24-72°C or 96 hrs, depending on the bacterial or 
fungal species. The blood agar plates are then visually inspected 
for haemolysis (clear zone) around the haemolytic microbial 
colonies. Secondly, the initial isolation of suspected biosurfactant-
producers may also primarily be done on blood agar plates, 
based on the acclaimed ability of many biosurfactants to lyse 
erythrocytes, which then results in haemolysis around suspected 
biosurfactant-producing microbial colonies, on the blood agar 
plates [25,87,131,135,146-148].

Blood agar and haemolysis

Haemolytic microbial strains cause lysis of erythrocytes, and exhibit 
haemolytic zones, which can be complete or partial haemolysis 
around the haemolytic microbial colonies. As introduced by Brown, 
the three basic types of haemolysis (haemolytic reactions) that can 
be observed on blood agar plates are designated, alpha (∝), beta (β) 
and gamma (γ) haemolysis [148,149], as denoted in Figure 2.

Alpha-haemolysis (α-haemolysis) is a greenish discoloration that 
surrounds a haemolytic microbial colony, growing on blood agar 
plate. This type of haemolysis represents a partial (greenish) lysis 
or incomplete decomposition (reduction) of the haemoglobin of 
the erythrocytes (red blood cells). Alpha haemolysis is caused by 
hydrogen-peroxide produced by alpha-haemolytic bacteria or fungi, 
which oxidise haemoglobin to green methaemoglobin, in the 
medium surrounding the colony. Thus, alpha-haemolytic microbes 
thus, produce greenish diffusible appearance on blood agar plates 
[149-152].

Beta-haemolysis (β-haemolysis) represents a complete haemolysis 
(complete breakdown) of the haemoglobin of the red blood cells 
surrounding a microbial colony, on blood agar plate, giving a 
transparent or translucent clearing of the blood agar around the 
microbial colony. Beta haemolysis is more pronounced when 
the blood agar plate is incubated anaerobically, although some 
microorganisms are weakly beta-haemolytic species [149]. 

Gamma-haemolysis (γ-haemolysis/non-haemolysis) is the third type 
of haemolytic reaction, in which there is actually no haemolysis at all, 
as there is lack of haemolysis in the area surrounding the microbial 
colony on blood agar plates. Gamma-haemolysis show neither 
typical alpha nor beta haemolysis, due to no haemolytic change 
around the microbial growth on blood agar plates (http://www.
encyclopedia.com/science/encyclopedias-almanacs-transcripts-
and-maps/blood-agar-hemolysis-and-hemolytic-reactions). There 
may however, be, slight brownish discolouration (not haemolysis) 
on the blood agar plates [149]. Zonee of alpha and beta-haemolysis 
surrounding microbial colonies on blood-agar plates are however, 
designated as hallmark phenotypic features of various pathogenic 
microbes. 

Haemolysins as microbial toxins and virulence factors

Haemolysins, sometimes classified as enzymes, are lipids and 
proteins that have been extensively reported and studied in bacteria, 
fungi, various species of plants, invertebrates, mammals, and also 

denoted as perforins, in fungi, plants, invertebrates, and mammals 
[153-168]. Haemolysins cause lysis (destruction) of erythrocytes 
(red blood cells), by destroying their cell membrane (Figure 3), with 
release of their haemoglobins; thereby, providing iron, for bacterial 
growth. Through haemolysins enzymatic attack on phospholipids, 
the cell membranes are subsequently destabilised [169], as shown 
in Figure 3.

Pore formations in microbial cell membranes, derangement of 
microbial cell membrane integrity, detergent action, or lipase 
activity are the major mechanisms by which microbial haemolysisns 
cause haemolysis [69-173]. It was further proposed that the 
hydrophilic part (the cationic part) of biosurfactants initiate 
electrostatic interaction with the negatively charged components 
of the bacterial cell membranes; while the hydrophobic portion 
was supposed to permit the peptides to insert into, and permeate 
the bacterial cell membranes [174]. Some haemolysins however, 
attack the phospholipid of the host cytoplasmic membrane, by 
using phospholipases lecithinases, and the phospholipids, lecithin 
(phosphatidylcholine), often used as substrate; although, some 
haemolysins affect the sterols of the host cytoplasmic membrane [87].

In addition to bacterial growth, due to the release of haemoglobins 
after red blood lysis; thereby, providing iron, pathogenicity; are 
also reported, and the responsible haemolysisns considered as 
toxins. So, being identified as extracellular toxic proteins that 
are produced by several microbial species, all of which possess 
a certain pathogenic potential; haemolysins have usually been 
further considered as virulence factors [175], and sublytic effects 
of haemolysin can alter host cell regulation and lead to cell death 
[176,177]. Due to production of cytolytic toxins, haemolysins from 
several bacterial and fungal strains have been confirmed to possess 
lytic activities that correlate with severity of haemolysin–induced 
infections, sometimes, with high mortality rates [168,177-180]. 
Haemolysis is also considered a pathogenicity indicator tool [180-
182], and haemolysins have similarly been linked to increased 
severity of infections, and concretely associated with virulence, in 
addition to pathogenesis or pathogenicity [152,183-188].

Figure 2: Haemolytic reactions on blood agar plates.

Figure 3: Permeability of bacterial cell membrane by haemolysin 
(biosurfactant).
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Among the well-known diverse toxigenic microbial haemolysins 
are, small β-pore-forming toxins, alpha-haemolysin monomers 
secreted by Staphylococcus aureus, aerolysin, secreted by Aeromonas 
hydrophila; α-toxins, secreted by Staphylococcus aureus and Clostridium 
septicum; cholesterol-dependent cytolysins (CDCs), like streptolysin 
O, secreted by Streptococcus pyogenes, and listeriolysin O, secreted 
by Listeria monocytogenes or AB toxins, like the diphtheria toxin, 
secreted by Corynebacterium diphtheriae, as well as the toxic fungal 
haemolysins like, nigerlysin, aerolysin, ostreolysin, pleurotolysin A 
and B etc. [166,169,189-193].

Mechanisms of pore-forming toxins are depicted in Figure 4; 
thereby, it is designated that pore-forming toxins like thermostable 
direct haemolysin (TDH) are also known to induce haemolysis, 
by incorporating into cell membranes to form pores [194]. 
Pore-forming toxins are secreted by microbial pathogens in a 
water-soluble form that binds to the target cell, then generally 
multimerises into an amphipathic structure that finally inserts into 
the target cell membrane, and then forms a pore [169]. The native 
thermostable direct haemolysin (TDHn) is transformed into non-
toxic fibrils, rich in beta-strands, by incubation at 600°C, to form 
the incubated thermostable direct haemolysin (TDHi). The TDHi 
fibrils are dissociated into unfolded states by further heating above 
800°C (TDHu) but the protein is trapped in the TDHi structure 
by slow cooling of TDHu, while rapid cooling of TDHu results in 
refolding of the protein into toxic TDHn [195].

Haemolysins lyse erythrocytes, which results in the release of 
iron, an important growth factor for microorganisms, especially 
in pathogenicity, and during infections [196,197], as it is certain 
that numerous pathogenic microorganisms grow in the host by 
using haemin or haemoglobin as a source of iron [198-201]. Several 
fungal haemolysins have also thus, been proposed as virulence 
factors [202-204]. In addition to cell adherence, cytotoxicity and cell 
invasiveness, haemolysis also has an additional clinical significance, 
in being regarded as a virulence factor [205,206]. Furthermore, 
microbial haemolysins promote opportunistic infections and other 
clinical conditions, and also presented as risk factors in hospitals 
patients [202,207-209]. The expression of a haemolytic protein, 

with capabilities to lyse erythrocytes, has also been suggested as 
providing survival strategy for fungi during opportunistic infections 
[210]. The haemolysin, which enabled the fungus to disrupt blood 
cells, contained negatively charged domains that could also be 
detected in infected patients [166,211-213].

Research studies have shown that another application of fungal 
haemolysins has been their use as biomarkers for personal exposure 
to fungi or species-specific identification of opportunistic fungal 
diseases [166,214,215-217]. There is therefore, considerable interest 
in the development of diagnostic assays for detecting haemolysins 
as biomarkers of allergic and disseminated fungal exposure [166]. 
In actual fact, fungal haemolysins have been useful as biomarkers 
for exposure to indoor fungi because they can be measured in 
bodily fluids and environmental samples [202].

Extrapolations of the haemolysis screening assays in the 
determination of biosurfactants

According to Mulligan et al. [96] and Walter et al. [87], the 
technique of using blood agar plate haemolysis assay to screen for 
biosurfactant production on soluble substrates was shown to be 
quick and reliable. Some authors also believed that haemolysis 
screening method can be used to limit the number of samples, when 
selecting biosurfactant-producing microorganisms. In some cases, 
further screening for biosurfactant-producing microorganisms is 
only carried out, after screening for positive haemolytic activity 
[19]. The clear zone of haemolysis around the microbial colony on 
blood agar plates has commonly been related to the ability of the 
microbes to produce surfactants, while the diameter of the clear 
zone usually considered as a qualitative indicator of biosurfactant 
production [96,218]. It has however, been reported that haemolysis 
assay is not a specific method for biosurfactant production, since 
not all biosurfactants have haemolytic activities, basically due to 
presence of compounds other than biosurfactants [102,113]. Such 
other compounds include, virulence factors, toxins, and other lytic 
enzymes that can lyse erythrocytes [219]. It was also reported that 
biosurfactants that are poorly diffusible may not lyse erythrocytes 
nor cause haemolysis [220,221]. Furthermore, in some studies, 
haemolysis assay was found to exclude many good biosurfactant-
producers, while in some reports, microbial strains with positive 
haemolytic activity were found to be negative for biosurfactant 
production [113]. There were a number of reports as well, which 
confirmed that microorganisms that were positive as biosurfactant-
producing with the use other selection criteria, were negative for 
biosurfactant production when screened for haemolytic activity 
[88,113,121].

The poor specificity of haemolysis screening assay had also been 
confirmed, in that, it can give a lot of false-negative and false-
positive results [113,117]. In addition, it was reported that the 
diffusion restriction of surfactant can inhibit the formation of 
clearing zones on blood agar plates. Likewise, over-incubation of 
the blood agar plates may cause microbial overgrowth, which can 
lead to accumulation of microbial waste-products that may lyse 
the blood on blood agar plates; thereby, giving false appearance 
of biosurfactants, which are actually not present (http://www.
encyclopedia.com/science/encyclopedias-almanacs-transcripts-
and-maps/blood-agar-hemolysis-and-hemolytic-reactions). Until 
now, haemolytic microbial strains were generally believed to be 
biosurfactant-producers. Whereas, from the microbiological, Figure 4: Pore-forming toxins mechanisms.     
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clinical, pathophysiological and public health points of 
interpretations, the degree by which erythrocytes are haemolysed 
on blood-based culture media, is basically used to distinguish 
haemolytic and non-haemolytic microorganisms. Moreover, 
visualising the physical appearance of haemolysis on cultured 
blood agar plates has been used as a tool to determine the aetiologic 
(disease-causing) microbial species of various microbial infections 
[222].

In more recent times, biosurfactants have been generally 
considered as biodegradable, non-toxic (or minimally toxic), and 
eco-friendly/environmental-friendly compounds that are released 
by microorganisms [40,54,55,61,66,223-225]. But, apparently, 
most of the biosurfactants proposed in literature are reportedly 
produced by pathogenic microbes involved in pathogenesis, 
while relative levels of acute toxicity have also been recorded 
among significant numbers of surfactant-producing bacteria and 
fungi. The pathogenicity associated with haemolysis is therefore, 
a cause for concern, considering it being a commonly adopted 
biosurfactant potential and /or biosurfactant screening criterion. 
Therefore, contrary to the reports that biosurfactants-producing 
microorganisms used in some studies were generally recognised as 
safe (GRAS) [20], most of the microorganisms referred to as GRAS 
may still harbour one or more pathogenic/toxigenic/virulence 
factor(s), which can make them opportunistic pathogens [226].

Many well-characterised biosurfactant producers have been 
confirmed as pathogenic microbial species [24,203,227]. 
Conversely, haemolysis and haemolysins are specifically indicative 
of pathogenic and/or virulent or/and toxigenic status, rather 
than biosurfactant-production. The haemolytic action of certain 
bacteria and fungi on blood agar is so striking that haemolysis has 
been classified as very significant in clinical diagnosis of microbial 
importance. Due to the pathogenicity of some biosurfactants-
producing microorganisms [24,203,227,228], they were therefore, 
more recently, considered not appropriate for scaled- up production 
[25]. The detection of virulence genes coding for haemolysis and the 
determination of the antimicrobial resistance, in addition to the 
factors that contribute to pathogenicity and toxicity can contribute 
to better understanding of the need for better selection criteria 
of biosurfactants-producing microorganisms, and applications of 
their products [228], in the petroleum industries.

As earlier reported, literature on the production and analytical 
detection of biosurfactants is overwhelming, with assertions of 
high yields, and with mostly over-exaggerated estimates, due to the 
use of flawed or inaccurate analytical techniques [229]. However, 
none of the previous documented assertions on haemolysis assay, 
in biosurfactant determinations or contrariwise, highlighted 
the vivid microbiological and safety implications of haemolysis 
assay in biosurfactants-producing microorganisms. Based on the 
tremendous afore-mentioned intriguing justifications, haemolysis 
assay more appropriately identifies microbial strains with 
haemolytic (pathogenic/toxigenic/virulent) potentials. It can then 
be extrapolated that haemolysis assay (i.e., lyses of erythrocytes) 
on blood agar plates are more of diagnostic or determinative 
tools for microbial pathogenicity, rather than biosurfactants 
productions, and can therefore, not be conclusively confirmatory of 
biosurfactant-production, nor considered an appropriate selection 
criterion for biosurfactants. Thus, the likely or real pathogenicity, 
and/or virulence and toxicity of biosurfactants-producing microbes 
need to be appropriately assessed by haemolysis assay, prior to 

their potential applications in various petroleum industries, more 
especially, as they may be multi-antimicrobial resistant haemolytic.

From the petroleum industries perspectives, polycyclic aromatic 
hydrocarbons (PAHs) and naphthenic acids (NAs) are well-known 
to be toxic contaminants of environmental concern [230]. It is 
therefore, of necessity to ensure that additional hazardous concerns 
associated with petroleum activities are not introduced into the 
environment. A variety of microbial taxa are able to synthesize 
biosurfactants but it is ideal to isolate biosurfactants-producing 
microorganisms from appropriate and safe sources. From the ideal 
petroleum microbiology, public health, and hydrocarbon-processing 
points of view, the microbial strain profile and the ecological niche 
matter, as they determine the physiological status and metabolites 
production of the putative microorganisms. Therefore, it is 
proper to isolate biosurfactants-producing microorganisms from 
same or closely related ecological nich(es), for same physiological 
characteristics, extended survival, and maximal production of 
biosurfactant metabolites. Furthermore, toxic agents can cross 
microbial membranes [231], into the hosts; so, haemolysis assay, is 
hereby, suggested as, a highly determinative and qualitative screening 
assay indicative of the biosafety potentials, for the determination 
of pathogenic, toxigenic and/or virulent biosurfactant-producing 
microorganisms in the petroleum industries.

CONCLUSION

Biosurfactants are highly important microbial compounds of 
tremendous benefits but their significant public health concerns, 
especially regarding their haemolytic potentials serving as 
biosurfactant property are presently misconstrued. Bacterial and 
fungal haemolysins have been used as diagnostic tools, and/or 
biomarkers but microbial toxicity is undesirable in selected microbial 
candidates for various beneficial activities, such as, biosurfactants-
productions. Based on the intriguing afore-listed justifiable reasons, 
it can be noted and extrapolated that haemolysis assay; using blood 
agar is not so reliable, sensitive or suitable for determination of 
biosurfactant production, as it does not correlate particularly with 
specific characteristics of biosurfactants’ production. However, 
haemolysis assay is quite appropriately as, a reliable and sensitive 
safety bioassay, in routine monitoring, for pathogenic/toxigenic, 
and virulence determinations and regulations, as well as for 
selecting safe and environmental-friendly biosurfactant-producing 
microbial candidates.
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