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INTRODUCTION
Chronic wounds develop as a result of defective regulation of the 
complex cellular and molecular processes involved in proper 
healing [1–4]. Chronic wounds affect nearly 8.2 million people 
worldwide and cost between $28 to $31 billion annually to treat 
[5]. Although a number of studies have been performed to 
address the processes involved in wound chronicity (including 
genetic, non-genetic, and epigenetic processes), so far, the 
scientific wound healing community has been unable to crack 
the very difficult, complex, and multi-dimensional processes 
involved in initiation/development of chronic wounds and, in 
particular, of diabetic ulcers. This is primarily because we cannot 
experiment in humans and it is virtually impossible to study the 
initiation and development of wound chronicity in humans 
because by the time such wounds present themselves in the 
clinic, initial stages of development are long gone. Therefore, 
animal models for study of the genesis of non-healing chronic 
wounds and of progression to full chronicity are critical for 
elucidating the processes involved.

Although several animal models have been previously developed 
to study chronic wounds, these models only mimic some of the 
critical elements of chronic wounds in humans [6-10]. This 
includes venous ulcers, pressure ulcers, wounds resulting from 
ischemia-reperfusion conditions, and those in which 
investigators introduce biofilm-forming bacteria to cause wounds 
to become chronic [11-20]. More recently, wounds in a diabetic 
mouse model induced by streptozotocin were challenged with 
Pseudomonas aeroginosa to induce chronicity [21]. This model 
mimics some aspects of type I diabetes in humans but the 
wounds do not attain the characteristics of chronicity found in 
wounds of patients with type II diabetes, which are the most 
severe and common type of chronic wounds. Indeed, these 
models involved infecting the wounds with biofilm-forming 
bacteria maintained in the laboratory. This situation is not 
representative of human chronic wounds in which biofilm 
occurs spontaneously and is derived from the skin microbiome. 
Therefore, more appropriate models need to be developed.

A MOUSE MODEL TO STUDY
CHRONIC WOUND DEVELOPMENT
AND PROGRESSION
We have recently developed a chronic wound model in the db/
db-/- type II diabetic mouse [6]. To develop this model we took 
advantage of the fact that chronic wounds in humans contain 
toxic concentrations of Reactive Oxygen Species (ROS) and 
biofilm-producing bacteria [22–25]. It has been shown that ROS 
impair keratinocyte migration in vitro, potentially inhibiting re-
epithelialization [26,27] and that high levels of ROS also lead to 
DNA damage, gene dysregulation, protein and lipid damage, a 
hostile proteolytic environment, and cell death [6,25].

To generate chronic wounds in the db/db-/- mice, we create high 
levels of Oxidative Stress (OS) in the wound tissue with a single 
treatment with specific inhibitors for the antioxidant enzymes 
catalase and GPx at the time of wounding (Figure 1). The 
wounds become chronic within 20 days after treatment and 
remain chronic for 40-100 days if the animal survives [6,28,29]. 
In addition to lack of closure, excessive inflammation, lack of 
blood flow, high proteolytic environment, and poor matrix 
deposition, these wounds spontaneously develop a complex 
microbiota of the same biofilm-forming bacteria that are found 
in chronic wounds in humans, leading to the chronic presence 
of biofilm (Figure 1). Furthermore, when we treated the chronic 
wounds starting at 20 days post-wounding with N-Acetyl-L-
Cysteine (NAC) and α-tocopherol, two antioxidant agents, we 
can reverse chronicity [6]. We found that the OS falls rapidly, the 
biofilm dismantles, and the wounds heal, strongly suggesting 
that the high levels of OS we created immediately after 
wounding is important for initiation of chronicity [6]. In 
addition, we have also found experimentally using our chronic 
wound model that high OS is necessary but not sufficient for 
chronic wound development. The microbiome of the skin is 
critical for the development of biofilm in the presence of high 
OS [30,31].
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Figure 1: Oxidative Stress (OS) in the wound tissue with a single
treatment with specific inhibitors for the antioxidant enzymes
catalase and GPx at the time of wounding.

POTENTIAL FOR NOVEL TREATMENT
APPROACHES
Numerous attempts in treating chronic wounds have
consistently been made in the last couple of decades, but success
has been limited. Using our model in diabetic mice, we have
analyzed various processes involved in initiation of chronicity
over the first 48 hour post-injury. Our data indicate that during
the first 48 hour post-injury, levels of oxidative stress and
inflammation in chronic wounds are critical for initiation of
chronic wound development [32]. In addition, elevated levels of
epinephrine in the wound prevent re-epithelialization and
alterations found during the hypoxic processes strongly suggest
that the triggers for angiogenesis do not occur; indeed, they are
suppressed, and therefore the wound is deprived of nutrients
and oxygen. As a consequence, the building blocks needed for
ATP production, the energy currency of the cell, are not present
in sufficient levels to allow for proper cell function needed for
granulation tissue formation and re-epithelialization. Under
these conditions, cell death ensues and the wound healing
processes are halted [32].

CONCLUSION
Given our findings in these studies, we propose that during the
first 24hr after debridement, the wound be treated with:

• Both antioxidant molecules that eliminate reactive oxidative
species and with Non-Steroidal Anti-Inflammatory Drugs
(NSAIDs) to decrease oxidative stress caused by pro-
inflammatory lipid molecules;

• An activator(s) of Nrf2;
• An inhibitor(s) of Hif3α; and
• An inhibitor(s) of epinephrine to allow re-epithelialization to

initiate.

At 24hr, the wound should be treated in addition with:

• PDGF, VEGF, and an inhibitor(s) of Thbs1 to stimulate
angiogenesis;

• Inhibitors of cathepsins and ECM degrading enzymes to
decrease matrix degradation; and

• Addition of IL-6 to stimulate the activation of M2
macrophages.

Furthermore, the patient should be treated immediately with
products that stimulate energy production to increase the levels

of ATP in cells, and with anti-lipid peroxidation molecules to
decrease cell membrane damage. In addition, because the
microbiome of the skin is critical for biofilm formation, the
wounds should also be examined for the composition of the
microbiome so that appropriate treatments are applied to
prevent the return of biofilm. Decreasing the oxidative stress
with antioxidants should help decrease the probabilities of
biofilm returning but in addition, treatment with small
molecules that penetrate bacterial cells, halts protein synthesis,
and leads to bacteria cell death should also be considered in
conjunctions with topical antibiotics. Such treatment approach
should continue until it is clear that the wound tissue is forming
and re-epithelialization is occurring. The time needed for this
combined treatment will have to be evaluated by the physician
to personalize treatment.
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