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Abstract

Human mitochondrial DNA (mtDNA) have been used intensively in the field of forensic identification of victims or
suspects of crime through biological evidence. The number of mtDNA molecules in a single cell are in the tens of
thousands which enable analysis of samples very little or damaged. Till now there is no standard method for
identification using mtDNA in a mass disaster victims such as natural disasters, wars and accidents so that the
identification process can not run fast. This study found C16.223t variants in mtDNA sequences that can be used to
divide the database into two groups so as to accelerate the process of identification through a mathematical
algorithm. This variant has the highest frequency (29.7%) of the 91 polymorphic human mtDNA HVS1 along the 300
nucleotide (16,024-16,324) derived from the NCBI database as much as 142 sequences. MtDNA sequences
obtained from data collection Papuan human mtDNA groups that have been published in the NCBI. The next variant
that can be used as a classifier in a row in the sequence is 16,311; 16,304; 16,189; and 16,270 with the identity
(T→c). For a matrix Q is reversible so the matrix and could have the opposite diagonal. Thus the above equation

can be solved by using the diagonal method that can be written: � = � ∧ �−1. This equation could count the number
of transitions and transversion substitution mutations that occur in a nucleotide sequence of mtDNA. With this
grouping, the database can be reduced so as to accelerate the process of identification of samples. Expected
method of grouping by the variant with the highest frequency can be developed in the codification database for
forensic interest such as the police or the mtDNA database purposes of study anthropology and evolutionary
biology.

Keywords: Mutations of mtDNA; Hypervariable region; Biostatistics;
Xt-n; Transition intensity matrix

Introduction
Human mitochondrial DNA or mitochondrial DNA (mtDNA) has

been used intensively in the field of forensic identification of victims or
suspects of crimes through biological evidence. The number of mtDNA
molecules in a single cell in the tens of thousands that make the
analysis of samples very little or even damaged, for example bombing
victims in Legian-Kuta, Bali (Bali Bombing), Jimbaran (Bali II), plane
crash victims in Padang Bulan Medan, and other cases. Currently there
is no standard method for identification using mtDNA in a mass
disaster victims such as victims of bombings or natural disasters, wars
and accidents so that the identification process is not running fast.
Based on these problems, the analysis of mtDNA mutations in mtDNA
hypervariable regions with the approach of biostatistics with
application Xt-n basis in determining the identity of the mutation
through a transition intensity matrix becomes important to be used as
a benchmark in the development of future biomolecular research [1-4].

MtDNA mutation rate ten times faster than nuclear DNA. This is
because in mitochondria there are many free radicals are formed as a
reaction byproduct of respiration and DNA polymerase enzyme χ
mtDNA does not have a system repair during replication. Control

region or D-loop mutations are relatively more tolerant because they
do not encode proteins. This tolerance led to the D-loop mutations
could accumulate, so the difference or D-loop variation between
individuals is relatively high and therefore also called hypervariable
regions. There are two hypervariable regions on mtDNA D-loop that is
hypervariable segment 1 (HVS1) at position 15971-16569 and
hypervariable region 2 (HVS2) at 1-589 positions. HVS1 area and
HVS2 role in determining the identity or the identification process. D-
loop diversity among human individuals in the world are used as a
means of making up the phylogenetic tree of the human race [5].

MtDNA has been used in forensic even become evidence in court
Europe and America [6-8]. The use of mtDNA especially for
identification based on shared D-loop region individuals inline
maternal lineage. Till now there is no standard method of
identification based on the mtDNA sequences to sequence databases
with a large number, for example in mass casualty disaster Bali or
mtDNA fingerprint database in the police [9,10].

Materials and Methods

Amplification of mtDNA in vitro
MtDNA PCR process to obtain primary data is done by machine

Automatic thermal cycler (Perkin Elmer) by 30 cycles. The initial stage
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of the PCR process is the stage of initial denaturation at 94°C for 1
min, then go to programs PCR cycles with each cycle comprising three
phases: denaturation performed at a temperature of 94°C for 1 min,
annealing stage is performed at a temperature of 50°C for 1 min and
extension or polymerization stage at a temperature of 72°C for 1 min.
The end of all cycles carried out additional polymerization process at a
temperature of 72°C for 4 min. DNA PCR results are stored at -20°C
[11-15].

Analysis of the results of PCR and mtDNA sequencing
method

PCR amplification results of the process are then analyzed by
agarose gel electrophoresis 1.2% (w/v) using a Mini subTM DNA
electrophoresis cell (Biorad). Agarose gel compositions can be made by
dissolving agarose (Boehringer-Manheim) in 1X TAE buffer (Merck:
0.04 M Tris-acetate, 0.001 M EDTA pH 8.0). The solution is heated to
its agarose late at all, then cooled to a solution temperature reaches
50°C-60°C. Electrophoresis process is carried out in 1X TAE buffer as a
medium conductor current at a voltage of 75 volts for 45 min. Once
this process is continued with mtDNA sequencing method using
Sanger dideoxy method using Automatic DNA Sequencer is based on
the dye terminator labeling method with materials and reactants from
the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit
(Perkin Elmer) [15-17].

Sequence analysis and correction of mtDNA
The nucleotide sequences obtained from sequencing process has

several nucleotide bases that can not be read so that coded N or
shifting the reading so as to resemble a deletion or insertion and
reading errors peaks. N code should be changed to correspond alkaline
highest peak in the electropherogram legible. Deletions and insertions
reassured by observing the distance between peaks readable and when
an error occurs reading it must be repaired.

Correction with the help of computer applications is done using a
program of ABI prism sequence navigator version 2.1. HVS1
sequences inserted in the table navigator sequence, number 16 024 is
determined by looking for typical order TTCTTT and cut so Thymine
16 024 is equal to 1. The length of the sequence likened to cut the other
end in order to obtain 300 sequences amount 16,324 nucleotides.
Position on revised Cambridge Reference Sequence/rCRS
(16024-16324) is included in the table navigator and conducted
comparative sequence with sequences were corrected. Different
nucleotide bases with rCRS or N of sequences that code is corrected
will be marked on the line comparison. Simultaneously
electropherogram images can be displayed and can be set zoomed in.
Correction is done directly in the table navigator sequence. When data
HVS1 has a pair complement HVS2 sequence data, the correction can
be performed simultaneously by first doing the reverse complement
sequences HVS2. HVS2 sequences that have been reverse complement
sequence inserted in the table navigator and undergoing procedures as
HVS1 sequence above.

Analysis of homology and polymorphism
Homology analysis manually can be done by comparing indirectly

all sequences. Each sequence compared to rCRS and recorded variants
possessed within Microsoft Excel table with the head of the column
and the number of bases mtDNA sequence rCRS first row. The next
line contains sequences with only variants only, which is no different

bases filled rCRS point. Overall sequences set in the next lines.
Homology analysis manually can be done with the command sequence
sorting by selected columns, ie the most variants. With some time
sorting and selecting the correct column homologous sequences could
then be collected in adjacent rows.

Grouping of mtDNA
Based on the number and types of variants each number bases,

selected variants with high frequency. Used variant with the highest
frequency to divide the database into two groups, which have bases
like the variant and which has a base such as rCRS. In each group is
determined again variance with the next highest frequency and is used
as a divider as the above. Grouping of stopped when the database can
be reduced up to 10%-20% of the original large.

Results and Discussion

Electropherogram of the sequencing results and correction
of electropherogram

Electropherogram of the identification number sequence by direct
sequencing using a primer on HVS1 area of 256 sequences. Twenty-
one of them electropherogram strecth poly C, which has a row of C
(cytosine) at bases 16184-16194 and experience the chaos of peaks that
can only be read up to 16194 positions only.

The use of DNA sequences in the study biostatistics and analysis of
phylogenetic is that there is a change of bases according to the time
that will be reconstructed an evolutionary relationship between one
species and another, which changes the nucleotide bases in an
organism/gene depends on various factors molecular, words another
phylogenetic studies follow a stochastic process. Markov chain is a
sequence of random variables X=(X0, X1, X2...) the nature, the
opportunity of a state Xt at time t just rely on a fixed value n of the
circumstances preceding Xt-1, Xt-2, .... Xt-n. Where n is the order of X.
In other words, Markov chain is a stochastic process of the past that do
not have an influence on the future when the present is known.

Correction of electropherogram done using applications on
Sequence program navigator. Electropherogram corrected each peak to
give more attention peaks of different variants with rCRS. Each variant
is reassured by observing the peak height. Peak characteristics such as
peak G is often weak and a row of peaks C is widened and disrupt the
summit by his side to be considered. Possible heteroplasmi ignored for
purposes of this study, bases selected from the highest peak in the
event of symptoms heteroplasmy. For the record of heteroplasmy itself
is considered in the process of identifying a missing person because it
can be used as valid identification between two electropherogram
people who have a maternal relationship [16-21].

Confirmation of the MITOMAP data
Variants with different nucleotide bases rCRS confirmed by the data

on MITOMAP variant. Confirmation aims to convince variants were
found. The confirmation of known, there are several variants that have
not been reported in MITOMAP, variants are with identity 16,060
(G→t); 16,109 (A→g); 16,110 (G→c); 16,170 (A→g); 16,175 (A→g); dan
16,258 (A→t).
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Transition intensity matrix (Q)
The process of substitution of the nucleotide sequence of DNA as

described in the Poisson process, can be generalized by using a matrix
Q, which is a matrix that determines the relative rate of change in each
of the nucleotide bases along the DNA sequences. Q matrix can be
formed by using the following theorem:

Theorem (matrix P (t) is the matrix of transition opportunities
P(t)=pij(t) is given by:� = � ∧ �−1

Proof:���(�) = �(�(�) = � �(0) = �)
          =  ∑� = 0∞ �(�(�) = � �(0) = �,  �(�) = �)�(�(�) = � �(0) = �)
          =  ∑� = 0∞ (��)���−�� (��)��!
(based theorem k-step matrix opportunities)

From the equation above, if the form (Pk)ij substituted in the form
of a matrix will be obtained:

��� � = �−�� ∑� = 0∞ ��� ��!
If there are non-negative matrix Q and size k x k, then apply:

�� = ∑� = 0∞ ���!
So the above equation becomes:�(�) = ���(�) =  �−�� ���                     = ���
Thus obtained matrix A as follows:

Q = (P-I)μ

The rows of the matrix Q follows the order of the nucleotide bases
A, C, G and T. The components of pij(t) satisfies the following
conditions:

1.  ∑� = 1� ���(�) = 12. ���(�) > 0 for � > 03. �(�+ �) = �(�) + �(�)
This equation is known as the Chapman-Kolmogorov equation.

So that the above equation is fulfilled, then the matrix Q must
satisfy:∑� = 1� ��� = 0

So the equation above, can be obtained by defining:

��� = − ∑� = 1� ���
Note that Qij>0 because it can be interpreted as a change of base i

flow into base j, Qij< 0 is the total current leaving nucleotide changes in
mtDNA i, therefore Qij value is less than zero. The number of
nucleotide substitutions per unit time is the total rate rate μ are:

� = − ∑� = 1� �����
Chapman-Kolmogorov equation is then obtained a differential

equation forward and backward:����(�) = �(�)� = ��(�)
This equation can be solved by P(0)=I is the initial condition on an

equation that will result in P(t)=exp((t)Q).

For a matrix Q is reversible, the matrix is to have the opposite/
inverse and could shaped diagonal. Thus the above equation can be
solved by using the method diagonal form which can be written:� = � ∧ �−1.

From the equation above, it can be substituted mtDNA mutation
data as follows: 500 existing variants, a variation of 95% substitution of
transition and transversion variant is only 5%. In terms of the point or
base numbers that experience, variations in transition achieve 83% and
17% transversions mutation. Variations transition itself can be grouped
into two: T>C and A>G with C>T and G>A. These groupings are
based on complement; T>C complements A>G and C>T complements
G>A. Which means when encountered variant T>C in the light chain
with a primer to sequence HVS1 then the heavy chains that were
sequenced in the region will find variants HVS2, A>G. By grouping
these variants can be known tendency is formed, which is evident from
the number of bases or of total mtDNA variants both have a value that
is not much different.

Character variant in question is the type and amount of 91
polymorphic variants in approximately 300 bases. Variations transition
is a variation of purine bases with purine or pyrimidine to pyrimidine
whereas transversion variation is a variation of a purine with a
pyrimidine or vice versa. Variations T>C in the complement light
chain with a variation of A>G in the heavy chain and vice versa, as well
as C>T complements G>A and C>A to G>T [19-21].

Grouping based on the highest frequency
Variants with the highest frequency can be seen from the discussion

above, but with attention to the linkages between variants in the
preceding table, the variant could used as a divisor is: C16,223t,
T16,311c, T16,304c, T16,189c and C16,270t. Using these variants do
grouping that split the data into two groups of the same base with
rCRS and which are not. The group with the same base with rCRS
further subdivided with the next highest frequency variants.

Conclusion
The results of this research has been to simplify the system of

determining the mutation and found the system clustering algorithm
uses a variant with the highest frequency to reduce the number of
databases that need to be compared. Of the hundreds of sequences that
were analyzed contained 91 polymorph with divergences from 0.3 to
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5.6 and found six variants that have not been reported in MITOMAP,
namely G16,060t, A16,109g, G16,110c, A16,170g, A16,175g and
A16,258t. Varian C16,223t which is a variant with the highest
frequency (29.6%) was found to divide the database into two groups.
16,223t group has 27 morph can be divided further by variant
G16,129a, while group consisting 16,223C are 64 morph can be
grouped further variants: T16,311c, T16,304c, T16,189c, C16,270t. Use
of mtDNA sequences in the study biostatistics and phylogenetic
analysis follows a stochastic process, of the random variable X=(X0, X1,
X2...) the nature, the opportunity of a state Xt at time t just rely on a
fixed value n of the circumstances before ie Xt-1, Xt-2, .... Xt-n. In this
case the Markov chain is a stochastic process bases nucleotide changes
with the change of time, with the odds of various nucleotide changes
between states depends only on the previous state. Calculation of
nucleotide substitution mutation by observing the intensity of the
transition matrix then this equation can be solved by P(0)=I is the
initial condition of the equation that produces the form:
P(t)=exp((t)Q). For a matrix Q is reversible, the matrix is to have the
opposite/inverse and could shaped diagonal. Thus the above equation
can be solved by using the method diagonal form which can be
written: Q=S^S-1. By using this classification system, the database
needs to be compared can be reduced and the identification process
can be accelerated.
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