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Abstract
Progranulin (PGRN) is a secreted glycoprotein growth factor with tumorigenic roles in a variety of tumors includ-

ing, among others, breast, ovarian, prostate, bladder, and liver cancer. In some patients, for example with breast, 
ovarian or liver cancers, high PGRN expression in tumors correlated with a worse outcome. Studies using cell lines 
and animal models provide evidence that PGRN promotes tumor cell proliferation, migration and survival, and in-
duces drug resistance. Increasing or decreasing PGRN production enhances or inhibits respectively the growth of 
PGRN-sensitive tumors in vivo. PGRN activity is associated with p44/42 mitogen-activated protein kinase as well 
as phosphatidylinositol 3-kinases signaling pathways. In addition, PGRN may stimulate the formation of the tumor 
stroma. As an extracellular regulator of tumorgenesis, PGRN is a potential therapeutic target and biomarker of prog-
nosis in the treatment of various cancers.

Introduction
Growth factors, their receptors and downstream signaling proteins 

play a cardinal role in carcinogenesis [1]. In addition, many cancers 
depend upon hormones such as estrogen or androgens to support 
their growth. The importance of these extracellular signaling systems 
as targets in the development of anti-cancer drugs has long been 
recognized. Despite this progress, cancer continues to be one of the 
major causes of morbidity and mortality and many types of cancer 
remain plagued by a high loss of life [2]. The search for additional 
biological targets to expand the arsenal of potential anti-cancer 
weapons remains a priority. Here we will explore the hypothesis that 
progranulin (PGRN) is an extracellular regulator of tumor progression 
that presents novel opportunities as a therapeutic and prognostic target 
in the treatment of a variety of different cancers. The evidence will be 
reviewed (i): that PGRN is often over-produced in cancerous tissue 
and that this over-production correlates with disease progression, 
(ii): that experimentally increasing or decreasing the production 
or bioavailability of PGRN by cancer cells makes them respectively 
more or less tumorigenic in vivo, (iii): that PGRN stimulates mitosis, 
blocks apoptosis, including apoptosis due to anti-cancer drugs, and 
promotes invasion and that this occurs through signaling pathways 
that are well known to have oncogenic potential, (iv): that PGRN may 
have additional tumor promoting roles, for example by eliciting tumor 
stroma production.   

Progranulin [3] is also known as Granulin-Epithelin Precursor 
[4], Proepithelin [5], PC-cell-derived growth factor (PCDGF) [6], 
Acrogranin [7] and Glycoprotein, 88kDa (GP88). Edman sequencing 
of a protein called epithelial transforming growth factor (TGFe) 
revealed a sequence almost identical to an internal portion of PGRN, 
suggesting that TGFe may be a biologically active fragment of PGRN 
[8]. PGRN is a secretable glycoprotein [9] consisting of tandem repeats 
of a 12 cysteine module called the granulin or epithelin domain [10-
12,5,7]. The individual granulin/epithelin modules can be isolated from 
tissue extracts and urine as individual peptides of approximately 6 kDa 
[10,11,13], but whether these are biologically active in their own right 
or simple breakdown products is not fully resolved (See Figure 1). In 
this article the term PGRN (progranulin) will be used to mean the full 
length protein and is synonymous with Granulin/Epithelin Precursor, 
Proepithelin, PC-Cell-derived growth factor, acrogranin and epithelial 

Transforming Growth Factor. The 6 kDa peptidic fragments that 
correspond to individual granulin/epithelin modules will be called grn/
epi peptides. Following NCBI usage the gene will be referred to as GRN. 

PGRN is a multifunctional protein that has been implicated 
in early embryonic development [14,15], bone development [16], 
inflammation [17-19] and wound repair [20]. Mutational loss of a 
single copy of the human GRN gene results in a form of early onset 
dementia, called frontotemporal lobar dementia that is characterized 
by neuronal atrophy in the frontal and temporal cerebral lobes [21,22]. 
Many of these proposed biological roles for PGRN are characterized 
by cell proliferation, improved survival in the face of an apoptotic 
challenge, and migration through an extracellular matrix. As will be 
discussed below it is through these activities that PGRN is thought to 
promote cancer growth and development. 

PGRN expression in tumors from different anatomical sites

PGRN is expressed at higher levels than normal in a number of 
cancers of different types including carcinomas, sarcomas, gliomas and 
myelomas. The diversity of anatomical sites in which PGRN has been 
associated with cancer is suggestive of a significant role for PGRN in 
tumor biology. Although hard and fast rules cannot be applied, there 
is a trend, as reviewed below, for PGRN production to be greatest in 
more invasive stages of cancer progression. In some cases PGRN levels 
correlate well with clinical parameters such as overall survival and 
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progression free survival. 

Breast cancer: Immunohistochemical analysis of paraffin-
embedded human breast cancer samples demonstrated that PGRN was 
overexpressed in 80% [23] and 79% [24] of invasive ductal carcinoma 
and half of invasive lobular carcinoma, whereas almost no detectable 
PGRN expression was observed in normal mammary epithelium and 
benign tumors. PGRN expression significantly correlated with the 
histological grade of invasive and ductal carcinomas in situ [23], and 
with the Ki-67 index of proliferation in all invasive carcinomas [23]. 
P53 was more commonly expressed in those invasive carcinomas with 
high PGRN expression [23,24]. There was no significant correlation 
between PGRN expression and the human epidermal growth factor 
receptor (HER) family member HER-2. PGRN expression was 
independent of estrogen and progesterone receptors (ER/PR) status in 
one study [23], whereas Song et al. [24] reported that PGRN positive 
staining was more common in ER/PR negative samples than that in 
ER/PR positive tumors. Elkabets et al. [25] reported that high level 
PGRN staining was significantly associated with breast tumor size, 
histological and molecular subtypes. High PGRN expression correlated 
negatively with the luminal A subtype which are generally low grade 
tumors that express ER [26], but was positively correlated with triple 
negative breast cancer (tumors with negative expression of ER, PR, and 
HER-2 [27]) and basal-like breast cancer subtypes [25]. These cancers 
are often difficult to treat, suggesting that a PGRN-based therapy could 
significantly supplement existing breast cancer treatment. PGRN-
positive expression in cancer specimens correlated with significantly 
worse overall survival compared to those without PGRN-staining 
[25]. Recent work demonstrates that PGRN levels are elevated in the 
serum of patients with breast cancer [28]. In contrast to these studies 
however, comparing gene expression profiles between 10 tumors from 
node-positive patients who survived for 5 years after surgery and 10 

tumors from those patients who died of breast cancer within 5 years, 
Asaka et al. [29] concluded that PGRN was significantly downregulated 
among the patients who died or show worse outcomes and proposed 
that downregulated expression of PGRN is a prognostic indicator 
for subdividing node-positive patients into finer groups with “good 
prognosis”. 

Ovarian cancer: Ovarian cancer is the deadliest gynecologic 
malignancy and around 60% of women with it will die from the cancer 
[30]. In one immunohistochemistry analysis on human primary 
ovarian carcinoma, effusions, and tissues of metastatic lesions, PGRN 
protein expression was observed in 95% of ovarian solid tumor 
specimens, and the expression was detected in all tissue compartments 
of the ovarian carcinoma, including carcinoma cells, reactive stromal 
cells, and tumor-associated endothelial cells [31]. In a statistical 
analysis of GRN gene expression in laser microdissected ovarian tumor 
epithelium, GRN expression was observed only in invasive ovarian 
cancer epithelium and was absent in tumors with low malignant 
potential (LMP) [32]. Among LMP lesions, PGRN protein expression 
was, however, occasionally detected in the stromal cells. Miyanishi et 
al. [33] also reported that immunohistochemical staining of PGRN 
in the epithelial lesion of ovarian cancer is significantly stronger than 
that in LMP. PGRN has been investigated as a potential prognostic 
marker for ovarian cancer. A significantly worse overall survival for 
patients with high PGRN mRNA expression in ovarian cancers was 
demonstrated [34]. High PGRN protein expression in ovarian effusion 
tumor cells correlated to a better overall survival, while elevated PGRN 
expression in the tumor stromal cells correlated with worse overall 
survival [31]. Han and et al. [35] studied the relationship between 
the expression of several serum prediction biomarkers for epithelial 
ovarian cancer among patients in complete clinical remission. Using 
receiver operating characteristic and area under the curve analyses to 
define optimal cut-off points, PGRN levels were significantly associated 
with worse  progression-free survival and overall survival. Elevated 
PGRN levels at 3 months of clinical remission predicted progression 
at 18 months. 

Uterine cancer: PGRN protein staining was observed in the 
cytoplasm of tumor cells and stromal cells in endometrial cancer 
samples [36]. In endometrial cancer, PGRN protein expression was not 
associated with poor overall survival or known biomarkers of prognosis, 
including stage and grade. Approximately two thirds of the cancers 
co-expressed PGRN and ER. Elevated PGRN levels were observed in 
uterine leiomyosarcomas by immunohistochemical analysis, and the 
PGRN protein expression positively correlated with histological grades 
of tumors [37]. Those findings suggested that PGRN might be used to 
become a specific diagnostic marker for uterus leiomyosarcomas.

Prostate cancer: High levels of PGRN immunostaining were 
observed in prostate cancer tumor cells both among prostatic 
intraepithelial neoplasia (PIN) specimens and invasive cancer 
specimens [38,39]. PGRN was absent or showed low level staining in 
prostatic glands of normal tissues. However, PGRN expression level has 
no significant correlation with pathological stage, Gleason score, the 
status of lymph node metastasis, extraprostatic extension, perineural 
invasion, surgical margins, and vascular invasion. The elevated levels 
of PGRN staining in PIN suggest that elevated PGRN production may 
occur in the earlier stages of prostate cancer development.

Bladder cancer : Monami et al. [40] found that PGRN expression 
was detectable in both bladder cancer cells and normal bladder 
urothelium, and suggested that PGRN may play important roles in 

Figure 1: The structure of Progranulin: The upper panel shows that progranulin 
is a glycoprotein that is composed of seven and a half repeats of the granulin/
epithelin module designated A to G. P represents paragranulin, a six cysteine 
half module. The conserved amino acids of the granulin/epithelin module are 
shown (where C is cysteine, G is glycine, T is threonine, D is aspartic acid, P 
is proline and H is histidine. Dots represent amino acid residues that are not 
highly conserved). The lower panel shows that progranulin can be converted to 
peptide fragments each of about 6kDa that correspond to the granulin/epithelin 
modules. 
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carcinogenesis as well as regulation of normal physiological activity. 
Significantly higher immunostaining of PGRN was observed in 
invasive bladder tumors as compared with normal bladder tissues [41]. 
Lovat et al. [41] analyzed PGRN mRNA expression in bladder cancer 
using microarray database and found that overexpression of PGRN 
was observed in primary bladder cancers. PGRN mRNA expression 
levels was higher in high-grade bladder cancer than that of low-grade 
bladder cancer, and overexpression of PGRN were observed in patients 
who died after 5 years of follow-up compared with those alive after 
5 years of follow-up treatment [41,42]. PGRN levels in voided urine 
samples from bladder cancer patients revealed that PGRN level was 
significantly higher in patients with malignant lesions compared to 
healthy individuals [43].

Kidney cancer: Elevated PGRN levels were detected in renal cell 
carcinoma samples using Western and immunohistochemical analysis 
[44]. PGRN expression correlated positively with the histological 
grades of tumors.

Liver cancer: Overexpression of PGRN was observed in a majority of 
hepatocellular carcinoma (HCC) patients using immunohistochemical 
methods on liver tumor specimens [45,46]. Patients with high PGRN 
content in clinical specimens showed characteristics of aggressive 
HCC, such as large size of tumor and venous infiltration [46]. PGRN 
protein is commonly observed in the cytoplasm of HCC tumor cells 
[46,47]. Cheung et al. [46,48] also reported that strong expression level 
of PGRN is significantly associated with early recurrence after curative 
resection and suggested that overexpression of PGRN is a predictive 
biomarker of poor outcome for HCC. 

Esophageal cancer: PGRN protein is highly expressed in both 
cytoplasm and nuclei of esophageal squamous cell carcinoma cells 
[49]. Positive staining was also observed in stroma, including sporadic 
interstitial cells, esophageal glands, and vascular endothelial cells. In 
well differentiated tumors, positive staining of PGRN is uneven, whereas 
uniformly strongly positive staining was found in poorly differentiated 
tumors. PGRN positive staining was almost un-detectable in normal 
esophageal endothelium. PGRN positive staining was correlated with 
tumor infiltration depth and TNM classification.

Gastric cancer: Serological identification of tumour antigens by 
recombinant expression cloning identified GRN gene as overexpressed 
in gastric cancer [50]. PGRN was highly expressed in gastric cancer 
specimens with 2.3-2.9 folds of difference compared with the adjacent 
non-cancerous tissues. Using immunohistochemical analysis, PGRN 
protein expression was almost absent in normal gastric tissues, however 
88% of cells were PGRN-positive in gastric cancer biopsy specimens 
[51]. This may not be specific for neoplasia since increased mucosal 
PGRN staining was also observed in gastritis [51].

Laryngeal cancer: Using immunohistochemical staining on 
samples from primary laryngeal cancer and adult laryngeal papilloma 
as well as laryngeal leukoplakia, PGRN protein expression was found 
to be significantly higher in the cytoplasm of laryngeal squamous cell 
carcinomas (LSCC) than those of the other lesions [52]. Overexpression 
of PGRN mRNA levels was also observed in LSCC tissues.

Lung cancer: PGRN was investigated as a new candidate lung 
cancer biomarker by one large cohort study but was not found 
informative as a lung cancer biomarker [53]. 

Brain cancer: PGRN is consistently overexpressed in human 
glioblastomas tumors compared with normal brain samples [54]. Using 

microarrays, Martert et al. [55] investigated gene expression profiles 
between primary human glioblastoma multiforme (GBM) tumors and 
normal brain tissues, and found that PGRN is upregulated in GBM 
tumors. PGRN expression was detected in 36.7% of meningioma 
tumor samples using reverse transcription-polymerase chain reaction 
(RT-PCR) [56]. The average size (51.5±5.9 cm3) of tumors with PGRN 
expression was significantly larger than the mean meningioma  volume 
(24.9±2.8 cm3) of PGRN-negative tumors. The mean area of peritumoral 
brain edema which is associated with malignant development, was 
significantly larger in PGRN positive tumors than that in tumors with 
absence of PGRN. 

Myeloma and leukemia: PGRN mRNA and protein expression 
were observed in multiple myeloma (MM) cell lines, and the 
immunohistochemical analysis showed PGRN positive staining in 
bone marrow smears from MM patients but no detectable PGRN 
staining in bone marrow biopsy samples from patients in remission 
[57]. Larramendy and et al. [58] found that PGRN expression was 
significantly down-regulated in acute myeloid leukemia as assessed by 
cDNA microarray analysis.

Infectious agents, progranulin and cancer: In south-east Asia, 
chronic infection with the liver fluke Opisthorchis viverrini (O. viverrini) 
is a major risk factor for bile ducts cancer or cholangiocarcinoma. 
Screening genes from the transcriptome [59] or the excretory/secretory 
proteome [60] of O. viverrini that are associated with cancer in humans 
identified a parasite homologue of human PGRN. PGRN was secreted 
by the liver flukes and released into bile ducts to stimulate proliferation 
of biliary epithelial cells to promote host cells to turnover with the 
potential to increase susceptibility to ductal carcinogenesis [59,60]. 
Patients infected by Helicobacter pylori (H. pylori) have a higher than 
average risk of developing gastric cancer [61]. H. pylori infection 
was found to induce overexpression of PGRN at both mRNA and 
protein levels in gastric epithelial cells [51] which may contribute to 
development of gastric cancers.

PGRN promotes tumorigensis in experimental models

Given that PGRN is often over-expressed in cancers, and that PGRN 
levels are associated with poor outcome, does PGRN have a functional 
role in carcinogenesis? Over production of PGRN frequently confers 
a more aggressive phenotype on cancer cells in vitro, as assessed by 
parameters such as anchorage-independent growth, improved survival 
or invasion assays (for examples, see refs [34,36,38,40,45,46,57,62-66]). 
Increasing the production of PGRN in poorly tumorigenic cells often 
results in a more malignant phenotype following transplantation into 
mice. The over-production of PGRN in the estrogen-dependent breast 
cancer cell line MCF7, for example, results in increased tumorigenicity, 
estrogen-independence and resistance to the estrogen receptor 
blocking drug Tamoxifen [63,67]. Similarly, PGRN over-production 
confers greater tumorigenicity upon liver [46], ovarian [68] and 
endometrial cancer cells [36] when grown as xenografts in mice. SW13 
cells, which derive from an adrenal carcinoma, are highly sensitive to 
the proliferative effects of PGRN [3,65]. The parental SW13 cells are 
poorly tumorogenic in vivo, however by over-producing PGRN they 
become highly tumorigenic in mice [3].  SW13 cells have defects in 
the p53 [69] and Rb [70] tumor-suppressor systems, and exhibit little 
detectable expression of cyclin-dependent kinase inhibitors such as p21 
or p16ink4a [69]. Presumably the loss of function of tumor suppressors 
such as p53 in SW13 cells removes the brakes on the cell cycle, while 
PGRN provides the acceleration that drives them towards a more 
malignant state. 
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Primary cultures of human cells are more difficult to transform 
by direct gene transfer than rodent cells [71]. Specifically, there is a 
requirement for genes that prevent senescence (immortalizing genes) 
to cooperate with genes that activate the RAS-mediated cell signaling 
pathway and thereby stimulate proliferation [72-74]. In particular, 
RAS-mediated activation of guanine nucleotide exchange factors 
for the Ral small GTPases appears critical in the transformation of 
human cells [75]. Very few genes can be successfully substituted for 
mutant RAS in these primary cell transformation assays. Examples 
inhuman ovarian surface epithelial (OSE) cells include the oncogenic 
epidermal growth factor receptor-family member HER-2 [76]. 
Importantly, PGRN is also able to substitute for oncogenic RAS in the 
transformation of immortalized human OSE cells [33] as well as in 
human uterine smooth muscles cells [37]. These primary cells [33,37], 
that were first immortalized by expression of telomerase (hTERT) 
and SV40 large-T antigen (SV40) and then forced to express the GRN 
gene at high levels, were strongly tumorigenic when transplanted into 
athymic mice. Immortalized cells expressing hTERT and SV40, but 
that did not over-express the GRN gene, were not tumorigenic [37,33]. 
Similarly the expression of the GRN gene on its own did not transform 
the primary cells. The expression of SV40 impedes inhibitory control 
mechanisms on the cell cycle exerted by the p53 and Rb systems, as well 
as inhibiting the protein phosphatase 2A [77] and prevents mitogen-
mediated senescence, while increased expression of the GRN gene 
appears to provide the thrust that drives the immortalized, but non-
cancerous cells towards a tumorigenic phenotype. The ability of PGRN 
to replace oncogenic RAS in transforming immortalized cells suggests 
that it is a highly oncogenic protein. This interpretation, that PGRN 
can transform immortalized (pre-cancerous) cells is supported in other 
systems including the non-transformed but immortal renal epithelial 
cell line, MDCK, which becomes highly anchorage-independent when 
engineered to produce elevated levels of PGRN [3]. 

Just as the over-expression of PGRN promotes a more proliferative 
and tumorigenic phenotype, the reduction of PGRN mRNA levels may 
reduce proliferation in vitro and tumor growth in vivo. In tissue culture, 
proliferation and anchorage-independence can be inhibited by targeting 
PGRN mRNA in breast cancer [78], SW13 adrenal carcinomal cells [3], 
MDCK kidney epithelial cells [3], laryngeal cancer cells [52], prostate 
cancer cells [38], ovarian cancer cells [32,79] and liver cancer cells [80]. 
PC cells, which are a highly tumorigenic murine teratoma-derived cell 
line, secrete a growth factor, called PC cell-derived growth factor that 
is identical in structure to murine PGRN [6]. Targeting PGRN mRNA 
levels in PC cells abolished their in vivo tumorigenicity [81]. Lowering 
the mRNA levels of PGRN in other tumorigenic cell lines, including 
the breast cancer line MDA-MB-468 [78], the laryngeal carcinomal 
cell line Hep-2 [52], and liver cancer cells [80] also results in profound 
inhibition of tumor growth in mice. Monoclonal antibodies against 
PGRN are effective at inhibiting tumor growth of transplanted liver 
cancer cells in nude mice, and work by targeting both the growth of the 
tumor cells directly, but also by suppressing tumor angiogenesis [45]. 
Taken together, these results suggest that progranulin is both sufficient 
to stimulate a more malignant phenotype in poorly tumorigenic 
or immortalized cells; that it is necessary for tumor growth in some 
aggressive cancers, and that it has promise as a molecular target in the 
development of novel anti-cancer therapies. 

PGRN and the tumor stroma

It is well established that the non-transformed mesenchymal cells 
that surround the cancer and form the tumor stroma have a crucial 
role in the growth and metastasis of many cancer types [82]. In most 

healthy tissues, mesenchymal cells such as fibroblasts or endothelial 
cells express the GRN gene at low or negligible levels [83]. However, 
in the fibroblasts of the tumor stroma and tumor capillary endothelial 
cells, GRN gene expression may be abundant. This is well documented 
for ovarian cancers, where approximately half of the tumors examined 
displayed PGRN-staining in stromal fibroblasts and in two thirds of 
the tumors capillaries were PGRN positive [31]. This has important 
consequences since, as noted above the presence of ovarian stromal 
PGRN correlated with a poorer outcome [31]. In breast cancer cells 
PGRN stimulated increased production of the angiogenic proteins 
vascular endothelial growth factor (VEGF) [84,67] and angiopoietin 
[67]. Esophageal squamous cell carcinomas exhibited a positive 
correlation between PGRN and VEGF levels, with the levels of both 
proteins correlating with microvessel density [49]. Blockade of PGRN 
by monoclonal antibodies in HCC xenografts resulted in a decrease in 
tumor microvessel density, which was attributed to reduced production 
of VEGF [45]. PGRN may also have a direct effect on angiogenesis that 
is independent of VEGF production since it stimulated the proliferation 
and migration of endothelial cells in culture [20].

McAllister and colleagues have recently proposed a novel 
mechanism for tumor stroma formation where an initial robust 
breast cancer mass, the instigator, stimulates the formation of reactive 
tumor stroma in a second poorly-growing or indolent tumor located 
at a distant anatomical site [85,25]. The instigating tumors secrete 
the prometastatic protein osteopontin that activates the migration 
of a population of Sca1+cKit- hematopoietic stem cells from the bone 
marrow to the quiescent tumor [85]. Upon taking up residence in 
the indolent tumor the Sca1+cKit- bone marrow cells secrete PGRN, 
which in turn activates the growth of a fibroblastic stroma around the 
quiescent cancer cells [25]. The cancer cells then proliferate under the 
influence of the recently formed stroma to create new tumor masses 
[25]. Many of the details of how PGRN contributes to the formation 
and activity of the stroma remain unclear, but in principle the PGRN-
secreting Sca1+cKit- bone marrow cells might initiate the formation of 
the tumor stroma, while at a later stage intrinsic PGRN production by 
stromal fibroblasts may supplement or take over the role of the bone 
marrow cells in promoting and maintaining the growth of the tumor 
stroma. 

PGRN, cell survival and drug resistance

PGRN is a putative survival factor for normal and cancer cells in 
vitro. This may contribute to the overall growth of the PGRN-sensitive 
tumors, and may complicate cancer therapy since PGRN appears to 
confer increased resistance to several classes of anti-cancer drugs. 
PGRN prevents anoikis in cancer cells [65], a form of apoptosis 
that occurs when cells detach from their basement membrane [86]. 
Immunoneutralization of PGRN in ovarian cancer cells results in 
enhanced apoptosis as assessed by increased caspase-3 activation and 
poly(ADP-ribose) polymerase cleavage [79]. PGRN inhibits metabolic-
stress apoptosis in non-transformed fibroblasts [87] and cultured 
neurons [88,89]. Recent work in C. elegans and with macrophage from 
Grn knockout mice revealed that in the absence of PGRN the rate of 
phagocytosis of apoptotic cells increased [90], suggesting that PGRN 
may inhibit apoptotic clearance of injured or diseased cells.

Endocrine therapy is a mainstay in the treatment of estrogen 
receptor (ER)-positive breast cancer, with selective estrogen receptor 
modulators such as tamoxifen [91] playing an essential role in the 
treatment of ER-positive breast cancer. Over-production of PGRN in 
estrogen receptor-positive MCF-7 cells induced tamoxifen-resistance 
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[63,67]. The activation of mitogen-activated protein kinase (MAPK) 
signaling pathways in breast cancer cells by the over-production of 
growth factors or growth factor receptors promotes proliferation 
without requiring ER-mediated growth signaling [92]. This confers 
resistance to antiestrogens [93] thereby rendering antiestrogen therapy 
in effective [92]. In this regard, PGRN markedly increased MAPK 
activity in breast cancer cell lines [63]. Moreover, PGRN treatment 
in MCF-7 cells inhibited the tamoxifen-induced down-regulation of 
bcl-2 [94]. PGRN may in addition interfere with aromatase therapy 
since PGRN inhibited the efficacy of the aromatase inhibitor letrozole 
in a human breast cancer cell line [95]. PGRN expression level was 
significantly increased in letrozole resistant tumor cells compared 
with letrozole sensitive cancer cells [95]. Other hormone-based 
therapies may also be sensitive to PGRN production. For example, 
PGRN decreased apoptosis induced by the synthetic glucocorticoid 
dexamethasone (which is used in the therapeutic regimen of multiple 
myeoloma) in a dexamethasone-sensitive multiple myeloma cell line 
[96]. 

Ovarian cancer cells that constitutively over-produce PGRN were 
resistant to the platinum containing drug cisplatin [68] (which is used 
to treat ovarian cancer [97]). However, ovarian cancer stromal cells 
that were sampled after chemotherapy with platinum drugs tended 
to show reduced staining for PGRN compared to comparable tissues 
inspected before treatment [31] suggesting a level of complexity in 
the drug-PGRN relationship. The recurrence of liver cancer and 
chemoresistance are huge obstacles to provide curative treatment for 
patients [48,98,99]. In hepatic cancer stem cells [48], inhibiting the 
expression of GRN gene sensitized the HCC cells to chemotherapy [48], 
whereas elevated production of PGRN led to resistance to cisplatin 
and doxorubicin. In chemoresistant HCC cells, PGRN levels were 
positively associated with expression of the adenosine triphosphate-
dependent binding cassette ABCB5 which is a drug transporter in 
liver cancer cells [48]. The interaction between PGRN and ABCB5 
may provide a potential mechanism by which PGRN confers drug 
resistance. Chemotherapeutic resistance in non-small cell lung cancer 
(NSCLC) increased with the expression of PGRN [100]. Hu and et al. 
[101,102] studied the correlation between GRN expression in serum or 
tumor samples and chemotherapeutic sensitivity in NSCLC and found 
significant higher expression of PGRN in chemoresistant patients than 
in chemosensitive patients. They concluded that PGRN expression was 
significantly associated with response of chemotherapy and PGRN 
might become a biomarker to evaluate chemotherapeutic sensitivity 
and predict medical prognosis among NSCLC patients. 

The mechanism of action of PGRN

A functional receptor for PGRN has not been identified, although 
chemical cross-linking experiments show that PGRN [103], its 
constituent grn/epi peptides [104] and TGFe bind in a specific fashion 
to cell surface proteins [105]. Scatchard analyses indicated that both 
for PGRN [103] or grn/epi peptides [104] at least two classes of PGRN 
binding site exist, one of low affinity but high abundance together 
with other sites of low abundance but high affinity. PGRN binds with 
sortilin on cell surfaces which is likely to be part of a protein turnover 
mechanism [106]. PGRN also binds to and inhibits the TNF-receptors 
[106,107] and associates with the Toll-like receptor-9 [108]. These 
interactions are important in the regulation of inflammation. Other 
binding partners for PGRN include non-receptor extracellular matrix 
proteins such as perlecan [109] and cartilage oligomeric matrix protein 
[110]. The binding of PGRN to these extracellular matrix proteins 

modifies the biological action of PGRN either blunting or enhancing 
the combined proliferative effects of the PGRN-matrix protein pair 
[110].  

PGRN stimulates the MAPK and phosphatidylinositol 3-kinase 
(PI3K) pathways in cancer cells, as well as in non-transformed 
fibroblasts and neurons [20,34,38,40,45,57,62,63,65,66,111,112]. 
Both the MAPK and PI3K signaling systems are essential for PGRN 
mediated cell division, survival and invasion [65]. Interestingly 
different cells may show different signaling responses to PGRN, 
for example, bladder cancer cells show clear activation of MAPK in 
response to PGRN but little or no PI3K response [38]. Significantly, 
the bladder cells respond well to the motility and invasive activity of 
PGRN but not to its proliferative actions [38]. PGRN signaling may 
interact with integrin signaling pathways through focal adhesion 
kinase (FAK) [20,65]. In bladder cells PGRN-stimulated the formation 
of intracellular complexes of MAPK, paxillin and FAK [40] thereby 
linking the ERK and FAK signaling machinery. FAK is essential for 
growth factor and integrin-regulated cellular motility (reviewed in 
[113]). In addition to promoting motility-related signal transduction 
events, PGRN stimulates the expression of matrix metalloproteinases 
(MMPs) in cancer cells, including MMP2, MMP9, MMP13 and MMP17 
[65,84,114] which probably contributes to the migratory properties 
of cells stimulated by PGRN. Downstream effects of PGRN signaling 
include expression of proteins of the cell cycle such as cyclin D1 
[62,63,114], and cyclin B [62], the phosphorylation of other signaling 
intermediates such as glycogen synthase kinase beta [111,112], and the 
activation of transcriptional regulators such as nuclear factor kappa-B 
in myeloma cells [96] and JunB in chondrocytes [16]. 

The activation of the MAPK and PI3K signaling systems are 
characteristic of all the classic growth factors, however differences 
between the signaling properties of PGRN and those of conventional 
growth factors have been postulated. Non-transformed fibroblasts 
require stimulation by two independent growth factors in order to 
complete the cell cycle under serum free conditions [115]. One of these 
signals is provided by an insulin-like growth factor (IGF), while the 
other signal may be provided by one of a number of growth factors 
including members of the platelet-derived growth factor (PDGF), 
fibroblast growth factor (FGF) or epidermal growth factor (EGF) 
families. Genetically deleting the receptor for IGF-1 prevents the 
mitotic activity of the IGFs on murine fibroblasts, but also inhibits 
all other growth conventional factors from stimulating proliferation 
[116]. PGRN, however, retains the ability to promote cell division 
in IGF-I receptor negative fibroblasts under serum free conditions, 
indeed it is the only extracellular protein known to do so [62,117]. It 
is thought that rather than any ability of PGRN to stimulate distinct 
signaling pathways it has this property because it stimulates a more 
prolonged activation of proteins in the MAPK and PI3K pathways 
than do classic growth factors such as PDGF or EGF [62]. Unlike 
their wild-type counterparts, IGF-I receptor negative fibroblasts cells 
(R- cells) are not transformed by most oncogenes [116], although they 
are transformed by constitutively active mutant G-protein G-alpha 13 
[118], and become sensitive to the transformative activity of SV40 T 
as they age, possibly due to enhanced expression of the EGF-receptor 
HER-3 [119]. Whether PGRN signaling also interacts with G-alpha 13 
or HER-3 is unknown. The ability for PGRN to promote proliferation 
in cells such as the R- cells, that are otherwise refractory to growth factor 
stimulation or the transformative effects of oncogenes, is worrisome in 
that it provides a putative pathway through which cells could escape the 
therapeutic effects of anti-cancer drugs that work by targeting growth 
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factors and their receptors. A summary of PGRN’s role and mechanism 
in cancer is given in Figure 2.

Although the focus in this article is on PGRN as a mitogen, a cell 
survival factor and a promoter of invasion, it may have many other 
biological effects, some of which could contribute to tumor growth. 
PGRN is anti-inflammatory [17-19], which might in principle effect 
the host’s immune response to developing tumors. Further, PGRN 
may regulate protein turnover since the over-production of PGRN 
by HeLa cells, or treatment of the cells with PGRN-conditioned 
medium, stimulates the formation of more and larger lysosomes [120]. 
Consistent with these observations, treatments that promote lysosome 
formation, such as sucrose or the expression of the transcription 
factor EB, stimulate GRN gene expression [120]. PGRN is reported to 
interact with intracellular proteins such as cyclin-T [121-123] which 
may modulate transcription. It remains uncertain if these interactions 
contribute to carcinogenesis, but they clearly provide additional 
possibilities through which the expression of the GRN gene could 
modulate cell function.

Regulation of GRN gene expression

At present there is no evidence that the GRN gene is amplified during 
tumorigenesis, suggesting instead that the elevated expression of the 
GRN gene in cancer cells results from changes in its regulation rather 
than an increased gene copy number. Mechanisms for the regulation 
of the GRN gene include mRNA stability [124], microRNAs [125-
128], the action of RNA binding proteins [129], signal transduction 
by MAPK signaling [79], nuclear hormone receptors [130], and by 
physiological parameters such as hypoxia [87,131].

GRN gene expression is stimulated by nuclear receptor hormones 
such as retinoic acid [124] and, in breast cancer cells [130], endometrial 
cancer cells [36] and the hypothalamus [132] by estrogen. Importantly, 
the increase in GRN expression that follows exposure to estrogen 
in breast cancer cells may set in motion a PGRN autocrine growth 
stimulatory loop [133] since the mitogenic activity of estrogen on MCF-
7 breast cancer cells in culture is inhibited by the immunoneutralization 
of PGRN [63], while enhanced GRN expression in breast cancer cells 

enables them to form tumors independently of estrogen [67]. 

Mitogens other than estrogen may also stimulate GRN 
gene expression. The proliferative actions of endothelin and 
lysophospahtidic acid (LPA) on ovarian cells were blocked when 
PGRN was immunoneutralized, suggesting that PGRN acts as an 
autocrine signal for these mitogens [79]. Both endothelin and LPA 
promote the expression of the GRN gene [79] through the activation 
of MAPK by a protein kinase A, calcium and cyclicAMP-dependent 
mechanism [79]. The up-regulation of GRN gene expression by MAPK 
may be widespread since it is also reported in neuroblastoma cell lines 
[131] and in gastric mucosa [51] in response respectively to hypoxia or 
the presence of the gastritis causing bacterium H. pylori. 

Differentiation agents such as retinoic acid and dimethylsulfoxide 
increase GRN mRNA expression in myelogenous leukemias [124]. This 
revealed for the first time the importance and complexity of PGRN 
mRNA stability in GRN gene regulation. In a progranulocytic cell 
line, for example, differentiation agents promoted faster GRN mRNA 
turnover, resulting in a rapid but transient increase in PGRN mRNA 
following stimulation. In contrast, in a promonocytic cell line identical 
treatments slowed the rate of PGRN mRNA turnover [124] leading to a 
slower and more prolonged elevation of the GRN mRNA level. Genetic 
studies on GRN in neurodegenerative disease proved that microRNAs 
(miRs), in particular miR-659 [125] and miR-107 [127] are critical 
negative regulators of PGRN mRNA levels. This extends to cancer cells, 
where miRs belonging to the miR-15/107 gene group were found to 
suppress PGRN mRNA levels in prostate cancer cells [128]. This may 
be functionally significant since in leukemic and prostate cancers low 
miR-15/107 correlates with high GRN expression [128]. GRN gene 
expression may be negatively regulated by the p53 tumor suppressor 
system. Restoring a functional p53 to the malignant glioma cell line LN-
Z308 which has lost both p53 allelles, results in an decreased secretion 
of PGRN [134]. Against this however, in HCCs higher GRN expression 
correlated with higher levels of wild-type but not mutated p53 [47] 
suggesting a complex relationship between GRN gene expression and 
P53. Additional control of PGRN mRNA expression through RNA-
binding proteins has recently been established. The dying neurons of 
patients with GRN gene mutations accumulate intracellular aggregates 
of a cleaved and ubiquitinated DNA-and-RNA binding protein called 
the TAR DNA Binding protein or TDP-43 [21,22]. The functional 
relationship between PGRN and TDP-43 in neurodegenerative disease 
is not well understood, but in normal brain tissue TDP-43 binds to 
and decreases PGRN mRNA levels [129]. Whether disruptions in 
the binding of TDP-43 (or similar RNA-binding proteins) to PGRN 
mRNA have a role in carcinogenesis is unknown. 

The proteolysis of secreted PGRN provides an additional control 
over PGRN levels. PGRN is digested by matrix metalloproteinases 
(MMPs) including MMP-9 and MMP-14 [135,136] as well as 
ADAMTS-7 (a member of the “A Disintegrin And Metalloproteinase 
with Thrombospondin Motifs” gene family) [137]. During 
inflammation neutrophil-derived enzymes such as elastase and 
proteinase-3 digest PGRN down to its constituent 6 kDa grn/epi 
peptides, some of which have biological activity in, for example, the 
regulation of inflammation [17,138]. This proteolysis is prevented by 
the secretory leukocyte protease inhibitor (SLPI) which, in addition 
to inhibiting elastase enzyme activity, physically binds to PGRN and 
protects it against enzymatic cleavage [17]. Intriguingly there is strong 
evidence that SLPI and PGRN act in concert to promote ovarian tumor 
cell mitosis and survival [139,140]. Other proteins in addition to SLPI 

Figure 2: A summary of the effects of progranulin in tumorigenesis. The left 
panel shows that PGRN stimulates cancer cell migration, survival and mitosis 
through MAPK and PI3K dependent mechanisms. Although not shown here, 
progranulin may stimulate the proliferation and activation of tumor resident 
fibroblasts in the stroma possibly through activating similar biological responses. 
The right panel shows the growth of SW-13 tumors in athymic nude mice eight 
weeks after subcutaneous injection into both flanks. Cells that were engineered 
to over produce progranulin (SW-13/PGRN) formed large tumors (arrow), 
while control cells (SW-13/vector) gave either small tumor growths (arrow) or 
undetectable tumor growth. (The scale marker is in cm with 2mm gradations). 
For details see ref [3].
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may protect PGRN from enzymatic degradation, including extracellular 
matrix proteins such as cartilage oligomeric matrix protein [141], and 
serum proteins such as high density lipoprotein [142]. The turnover of 
PGRN at the cell surface is controlled by Sortilin [106,107]. Sortilin was 
originally identified as a regulator of lysosomal enzyme trafficking [143] 
and is critical in controlling extracellular PGRN levels in neuronal cells 
[106,107,144]. Whether it has comparable functions in cancer cells is 
at present unknown. Taken together, the levels and activity of PGRN 
in vivo are likely to depend first on the intra- and extracellular factors 
that regulate PGRN mRNA levels, followed by complex extracellular 
interactions between PGRN, proteolytic enzymes, and stabilizing 
proteins such as SLPI that inhibit the proteolysis of PGRN. 

Conclusion
PGRN levels are often highly elevated in tumors at many anatomical 

sites compared to the equivalent normal tissue. PGRN may therefore 
have potential as a biomarker for disease outcome. PGRN acts as a 
mitogen, a cell survival factor and a promoter of invasion for a variety 
of cancer cells. PGRN may have other biological effects that contribute 
to tumor growth, including the formation of the tumor stroma, the 
induction of drug resistance, and anti-inflammatory actions. Given 
the frequency with which PGRN expression occurs in cancers and its 
tumorigenic biological actions, there is a strong likelihood that studies 
of the cellular and molecular mechanisms of PGRN action in tumor 
formation will supply innovative strategies for the development of 
novel anti-cancer therapies. 
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