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Mechanical engineers (ME) are generally motivated to build 
things. The typically attend four or more years at an ABIT-accredited 
engineering school, learn computer technology (e.g., CAD/CAM), 
mathematics (e.g., matrix theory), and material science (e.g., mechanics 
of materials). But, just as the slide rule has been obsoleted by the 
calculator, we have to ask three questions to get a better perception of 
the field; namely, where have we been, where are we now, and where 
are we going (or want to go) in the future?

To answer the first question, we began as an ad hoc field – designing 
bridges (now the province of civil engineers), steam engines, and all 
manner of machines. We used imprecise methods and seat of the pants 
reckoning. Today, we have evolved into a practical science, which is 
ever-more computer-based – using everything from finite-element 
modeling, to elaborate stress and strain simulations, to physical, 
chemical, and/or mathematical analyses of strength of materials. Not 
that many years ago, we wrote our own Fortran codes. Today, we 
have evolved into using packages for everything – many of which may 
be found on Matlab. But, while such packages support engineering 
mechanics and insure integrity, they do little to support design. Sure 
CAD/CAM systems enable the typical ME to be an order of magnitude 
more productive than their predecessors, who used drafting boards. 
But, why is this? The answer is three-pronged. That is, the computer 
enables (1) reuse, (2) intelligence, and (3) abstraction.

The computer enables reuse principally through databases and case 
bases. Previous designs may be stored and reused – only to be modified, 
indexed, and reused once more. The goal is to encapsulate design 
decisions for reuse and indexing. Expert systems have not worked well 
in this area because it is very difficult to capture all the nuances involved 
in a design decision. It is even more difficult to propagate the changes 
made from one design decision to another. For this reason, case-based 
reasoning is used to capture designs in an episodic memory for replay.

Intelligence refers to transformation in the context of mechanical 
design. For example, if one doubles the weight on an axle, what is the 
increase in diameter necessary to compensate? Similarly, how many 
stresses/strains (e.g., Hookes modulus) over what period of time 
justifies switching from steel to titanium in such critical joints (e.g., 
rotor connections)? In a case-based design system, intelligence refers 
to a capability to generalize one design to create others by process of 
instantiation. For example, the case might describe the parameters for 
the design of a small ship hull for doing say 20 knots. How might those 
parameters be generalized to be applicable to a large ship hull for doing 
say 30 knots? The answer is that some designs can transfer to others by 
process of randomization, or compression. This is akin to some forms 
of directed data mining, where data can be replaced by equational 
reductions. Where this works, the solutions are said to be symmetric. 
Otherwise, they are said to be random, or incomparable.

Thus, if the design ME can formally apply the design principles 
for one design to another, the pair is said to be symmetric. Often, 
otherwise random designs can be brought into symmetry through 
stepwise transformation. This points out the advantages of having an 
economy of scale.

The third prong is abstraction. Higher-level programming 
languages (e.g., CAD/CAM based on LISP) are abstractions of their 
predecessors – i.e., specific Fortran codes. Abstractions allow the ME to 
work non-procedurally. That is, instead of telling the computer what to 
do, the ME tells the computer what needs to be accomplished and lets 
the computer program supply the details. This characterizes fourth-
generation languages. The problem is that such languages are not 
universal and result in an explosion of special-purpose commands (e.g., 
similar to the methods found in the JAVA programming language).

The so-called fifth-generation languages are the fourth-generation 
languages supplanted with intelligent methods and procedures (e.g., 
PROLOGUE for logical inference on top of CAD/CAM). This is 
indicative of where we are going in the future. Think of it this way. 
Suppose you design a jet engine using a CAD/CAM system. Suppose 
that you want to modify the design to incorporate a high-bypass 
turbofan. This would change the gear ratios in the rear. Currently, the 
designer has to make such changes manually. There is no reason that 
the computer cannot make such changes for him or her, which frees the 
ME to think creatively and explore far more possibilities than would 
otherwise be practical. Such technological improvements are based on 
the capture, insertion, and utilization of knowledge. This technology is 
not inexpensive, but once a shell is written, it can be widely disseminated 
for a high ROI. A key principle derives from randomization. That is, 
the human should never have to do anything, or anything resembling 
anything similar, twice. We supply novel creative knowledge and the 
machine replays the ever higher-level routine knowledge. The promise 
of AI is to free MEs from non-creative work, while increasing their 
productivity and the quality of their work concomitantly.

Will we ever design objects by picking up a microphone and 
speaking our wishes? No, I doubt this because natural language does 
not facilitate the communication of formal constraints. But, at the 
same time, we will be able to say click and drag to enlarge the front 
turbofan and see a myriad of changes automatically propagate through 
the design as mediated by acquired design rules. One will be able to 
more or less formally state, optimize the size of the front turbofan to 
(1) minimize fuel consumption, (2) minimize noise, and (3) maximize
thrust – in that (or different) order(s). Or, the required constraints on
1-3 can be input and the system given the command to optimize the
design such that these constraints are all satisfied. Clearly, the need for
design rules is ubiquitous. But, how are such design rules acquired?
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This is a salient question because knowledge acquisition is the most 
costly problem needing solution in design automation. It is our belief 
that such systems will acquire knowledge by doing. That is, as these 
systems are used to design complex devices, they will acquire cases 
and their generalizations for replay. Indeed, we have Phd students 
working on the generalization problem at the present time. It is clear 
that generalization requires knowledge, but at least two things are 
not so clear. First and foremost, it is not clear how to best acquire 
that knowledge and second, it is not clear how to best represent that 
knowledge. That is, should the knowledge be compiled by experts, 
which is costly – especially when one factors in the need to maintain and 
update that knowledge. Otherwise, as we advocate, the knowledge can 
be acquired by doing. The difficulty here is that validity or optimality is 
not assured – particularly if the knowledge is to be shared/distributed. 
In some areas of ME, reliance upon such acquired knowledge can 
potentially be catastrophic (e.g., the design of safety devices). However, 
this can minimize costs – including that associated with maintenance 
and update. A solution here is to certify that knowledge prior to 
distribution. This fuses the best of both worlds.

Second, the question of how to best represent knowledge for ME 
design is summarized by, “no single representation can suffice for all 
uses”. We prefer cases because the many nuances of ME design are too 
varied to be readily captured by rules written by humans. Rather, we are 
looking into using rules to generalize cases. These rules are themselves 
subject to modification for use in generalizing other case domains. Many 

other types of AI – including neural networks, genetic algorithms, and 
the like are inappropriate because their acquisition is inherently NP-
hard, or intractable. Furthermore, we believe that the opportunity for 
reuse among cases, including their instantiation, allows for the design 
of intelligent systems, which can propagate design transformations by 
case substitution. For example, if one were to substitute a thermopile for 
a Carnot cycle compressor, the thermostat could be substituted for by 
one that allows less fluctuation in temperature. This is because the latter 
thermostat will draw excessive and unwarranted energy if associated 
with a Carnot cycle compressor (i.e., due to induction upon starting). 
Such substitutive transformations are based upon accumulated expert 
knowledge.

In summary, we overviewed the past and the current traditional 
methods for the engineering of complex mechanical designs. We 
explained what the human does best – novel creative engineering and 
what the machine does best – repetitive, symmetric reuse. The symbiotic 
joining of human and machine promises to revolutionize the practice 
of ME by freeing the design engineer to work non-procedurally and 
enabling him/her to exercise creative judgement, unencumbered by 
today’s need for repetition in the work environment. The complexity 
of ME designs will continue to increase along with their novelty 
concomitant with use and the overall growth in computing power. 
In actuality, the coming revolution in ME will parallel the coming 
revolution in software engineering upon which it depends.
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