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Abstract

Influenza is a viral disease that is easily transmissible, and it is found around the world and can affect anyone
regardless of their age group. There are 3 types of influenza viruses: A, B and C. Influenza viruses A and B are
usually responsible for causing outbreaks of influenza from limited to major epidemics or even pandemics. The main
preventive measure against this virus is annual vaccination, and the World Health Organization annually publishes
recommendations for the production of influenza vaccines, but the protection observed so far has not been optimal.
It has been proven that using egg as a substrate for vaccine production causes changes in the structure of proteins
on the surface of influenza virus, and these changes could be involved in the low effectiveness of vaccines against
influenza. Here we comment about platforms currently used to produce viruses for inclusion into influenza vaccines,
and suggest alternatives to improve glycosylation patterns to resemble more closely those found in viruses infecting
human beings, aiming to improve the effectiveness of protection conferred by these new vaccines.

Keywords: Influenza; Vaccine; Glycosylation; Substrates

Short Communication
Influenza is a viral disease that is easily transmissible, and it is found

around the world and can affect anyone regardless of their age group.
There are 3 types of influenza viruses: A, B and C. Influenza viruses A
and B are usually responsible for causing outbreaks of influenza from
limited to major epidemics or even pandemics, on the other hand, type
C viruses cause mild symptoms and do not have great ability to cause
an epidemic [1,2].

Since the last pandemic in 2009, the cases of influenza have not
disappeared, despite the national prevention programs conducted in
many countries. According to the World Health Organization (WHO),
during the 2015-16 influenza period, in December, over 35,732
specimens were analyzed, where 89% of them were classified as
influenza A and the remaining 11% was determined as influenza B.
Out of the influenza virus classified as type A, 93.3% were influenza
A(H1N1) and 6.7% was influenza A (H3N2) [3]. Almost half a year
later, during the month of June, more than 55,586 specimens were
analyzed and 60.1% were classified as influenza A and 39.9% as
influenza B. From the viruses classified as influenza A, 86.2% were
influenza A(H1N1) and 13.8% influenza A(H3N2) [4]. Although this
year the number of cases of influenza has remained within the
expected range, the possibility of an increase in the number of cases
due to the circulation of new viral variants that arise of the influenza
virus cannot be ruled out [5].

The main preventive measure against this virus is annual
vaccination, the WHO annually publishes recommendations for the
production of influenza vaccines, but the protection observed so far
has not been optimal. In the 2015-16 influenza season in Europe, six
circulating influenza virus H3N2 were poorly recognized by antiserum
raised against egg-propagated influenza virus H3N2 A/Switzerland/

9715293/2013, recommended for the vaccine in that season for
northern hemisphere. The same 6H3N2 viruses had a somewhat better
recognition by antiserum raised against egg-propagated H3N2 virus A/
Hong Kong/4801/2014, which was already recommended for the
preparation of the vaccine the following period 2016-17 influenza in
the northern hemisphere [6]. This illustrates that one of the main
causes of low effectiveness of vaccines against the disease, is the
difference between the virus used in the vaccine and wild type viruses
that transmit and provoke the disease.

Seven years since the last pandemic, the influenza virus with the
highest incidence remains being the AH1N1 virus, even though this
has been included as an antigen in all vaccines against influenza, either
trivalent or quadrivalent [7]. This lead us to ask why this virus is still so
incident, even more if it has not had substantial changes that warrant a
change in the composition of current vaccines. The purpose of this
work is to discuss the effect of the substrate used for production of
vaccines, on the structural characteristics of influenza virus as well as
to propose new alternatives to seek for improved vaccines against this
disease.

Influenza vaccines are mostly produced in eggs and a small portion
of them in cell substrates (Figure 1). It has been proven that using egg
as a substrate for vaccine production causes changes in the structure of
proteins on the surface of influenza virus, and these changes could be
involved in the low effectiveness of vaccines against influenza [8,9].

Today, licensed vaccines are expected to induce in the patient,
neutralizing antibodies that specifically bind to the hemagglutinin and
neuraminidase, as well as antibodies capable of recognizing conserved
protein regions to generate an adequate cellular immune response
mediated by T cells [10]. Despite much effort, the protection conferred
by available vaccines is limited to a certain percentage of the
population where it was applied. Historically, it has been estimated that
the major constraint is the high rate of mutability of influenza viruses
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[16,17], as well as the possibility of recombination between different
viral strains, the end result is the emergence of virus structurally
different that escape immune mechanisms previously generated in
individuals exposed to other viruses or vaccines [18].

Figure 1: Substrates used in vaccine production. Distribution of
vaccines currently licensed and produced in the following
substrates: egg, MDCK cells derived from dog kidney, Vero cells
derived from monkey kidney, as well as Express SF+ cells derived
from insect cells, the chart was derived using data from 60 vaccines
currently marketed [11-15].

The influenza virus AH1N1 used for the preparation of vaccines has
not changed since the last pandemic of 2009 [7], mainly because no
significant changes in the nucleotide sequence of the hemagglutinin
(HA) has been reported [19]. HA is found on the surface of the virus
[2], and it is the main viral protein used as antigen in vaccines.
Nevertheless, the effectiveness of the vaccine has not been the one
expected [20], therefore at present new alternatives or improvements
to existing vaccines remain under investigation.

Major successes in research on influenza vaccines have helped to
develop new technologies that have achieved the reduction of
production time or increased the performance of the antigen [21]. To
achieve this, various substrates and conditions for production of the
antigen were developed [22-27], thus obtaining recombinant vaccines
[28,29], virus-like particles [30,31] and viral-vectored vaccines [32] all
of these strategies start from a characterized virus or nucleotide
sequence, from which viral particles or proteins that constitute the
vaccine antigen are generated.

However, and despite that antigens produced are immunogenic or
even capable of inducing neutralizing antibodies following
immunization, there is an important limitation, persistent in all these
influenza vaccines production systems: post-translational
modifications, which occur particularly in each host or expression
system. The fundamental post-translational modification of
hemagglutinin (HA) and neuraminidase (NA) occurs via glycosylation
on several amino acid residues [33]. Glycosylation is an enzymatic
process, controlled by the host cell glycosyltransferases, which operate
in the Golgi apparatus during maturation of any glycoprotein [34].
Due to this process, the same viral sequence can generate different
protein structures when expressed in different hosts. This leads us to
consider that new vaccine production alternatives, would generate
virus whose glycoproteins have the glycosylation pattern of: avian cells,
insect cells, or mammal cells (Table 1) [8,35-37]. Table 1 show the
effect of different kind of cells in the structure of the hemagglutinin of

the influenza virus H5N1, where it is interesting to note that the
glycans vary in complexity, in particular the human and mammalian
cells show more branched and complex structure than the glycans
generated in the chicken embryo or even in the insect cells that were
previously glycoengineered to synthesize human-like N-glycans.

Source Substrate Glycans in the HA* Reference

Hen Embryonated egg ~8–9
monosaccharide
units, neutral and
highly branched

[8]

Insect
Spodoptera
frugiperda

SfSWT-7
(Glycoengineered to
synthesize human-like
N-glycans [8])

6–9 monosaccharide
units, Two additional
N-glycosilation sites
not presents in
higher eukaryotic
cells

[8, 36]

Human
Embryonic
Kidney

HEK293 ~12 residues,
complex glycans
were highly sialylated
(α2,3 and α2,6), and
also were highly
branched

[8, 34]

Chinese
Hamster
Ovary

CHO 8 to 18 residues,
Complex glycans
with higher sialylation
with α2,3 linkage
exclusively

[34, 36]

*The glycans of hemagglutinin were analyzed from H5N1 viruses, which were
previously developed in substrates from different sources.

Table 1: Influence of substrate in the glycosylation pattern of
hemagglutinin.

Today, most vaccines are produced in chicken embryo (Figure 1), so
that persons immunized with them are receiving an antigen whose
glycoproteins show structural differences to those present in wild type
virus circulating among human beings. Despite this situation, these
vaccines have historically shown a moderate capacity in preventing
influenza infections [38]. Current trends indicate that cell cultures will
replace the embryo as a substrate for vaccine production [24,39]. It is
too early to know whether these changes will positively impact the
capacity to confer protection, but according to the structural
vaccinology, it is a fact that the greater structural similarity between
the antigen of a vaccine and that present in the pathogen that is
transmitted between humans, the greater the protection induced,
because the antibodies generated will have greater capacity of
recognition for epitopes of the infectious agent [40], in influenza, the
main antibodies that neutralize the infectiousness will be those able to
bind to the HA [41]. HA is a glycoprotein that is responsible for the
binding and penetration into the cell [42].

Considering the above mentioned, during the production of
influenza vaccines, glycosylation conferred by the substrate will cause
glycoproteins HA and NA to show differences to those in wild type
virus. Previous studies have shown that differences in glycosylation
have consequences directly related to the capacity of protection [42]
and may even mask epitopes for neutralizing antibodies [43]. Besides,
the virus derived from substrates phylogenetically closer to human
ones, was able to induce antibodies with greater protection capacity
and increased release of interleukin-2 involved in the protective
immune response [44].
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Furthermore, it has been observed that for proper cellular infection
is necessary a glycosylation pattern that avoids steric hindrance with
the target cell [42,43] and moreover allowing interaction of HA with its
receptor, which is directly related to the virulence of the virus
[2,45,46]. The viral neuraminidase also plays an important role in the
elimination of certain glycans of viral receptors, so it cannot be ruled
out that it could also modify those present in the HA allowing
infectivity [47].

Recent efforts are focused on finding new substrates that allow the
production of virus bearing more similarity to those transmitted
between humans. Some studies have evaluated cell lines derived from
human cells such as HEK293 [34,48], PER.C6 [34], Calu-3 [49] or lines
such as SfSWT-7 derived from insect cells, the latter genetically
modified to produce glycosylation patterns similar to humans [8]. The
results obtained thus far have shown that the antigens generated could
have greater similarity with the wild type virus transmitted among
humans; however this remains to be confirmed, as currently it has not
been possible to characterize the type of glycans present in the wild
type virus. This is due to the fact that during the isolation of influenza
virus from human samples, the glycosylation pattern will be inevitably
altered when the viruses are replicated on the substrates of
propagation. Efforts should be made in the short term to achieve
concentrated and purified virus-positive samples, a complex procedure
since most of the positive samples have a very low viral load as well as
the possibility of having other respiratory viruses or microorganisms,
which also present glycoproteins in their surface, which can potentially
mask or interfere with the characterization of wild type influenza
viruses. Moreover, one cannot rule out that the human species as a
host of influenza virus could lead to differences in glycosylation
patterns, as it has been seen that under pressure from the host, it is
possible to select new glycosylation sites that change the antigenic
structure, facilitating the avoidance of pre-existing immune response
[50].

In the search for the ideal substrate for vaccine production, the
possibility of generating it through genetic engineering is not ruled
out. Current cell editing systems based on CRISPR/Cas9 may allow to
quickly generating cells that synthesize viral antigens, structurally
more similar or ideally identical to wild type influenza viruses. This
technology has already been applied to obtain cells to represent various
models of patients in interaction with the influenza virus [51]. The
development of a substrate with the appropriate enzymatic machinery
to generate identical glycoproteins to those produced by human cells
would have an even greater scope, since there are biotechnological
products, that even with the recombinant DNA technology, cannot be
considered identical to humans, due to the type of post-translational
modification present in existing expression systems [34].

Given the importance of the effects of glycosylation during the
synthesis of viral glycoproteins, an increasing trend is to characterize
the type of glycans added in the new substrate of production of
influenza vaccines. Matrix-assisted laser desorption ionization mass
spectrometry (MALDI-MS) [8,52,53], several variants of HPLC [35,
36] and capillary gel electrophoresis with Laser-induced fluorescence
detection (CGE-LIF) [35,37,54] are tools that greatly improve chances
of determining such patterns more precisely.

As a general conclusion we can highlight that there are several
studies focused in improving the effectiveness of AH1N1 vaccines. In
fact, 3 areas or study are well recognized: (1) The first one is related to
the viral antigen, in where the WHO Global Influenza Surveillance and
Response System (GISRS), has had a main role for more than 60 years

in the monitoring, characterization, and selection of viral antigens for
vaccine production, in order to achieve a protective response against
potential strains that could provoke epidemic outbreaks [55]; (2) the
second field is focused on the substratum in where the antigen is
produced, many studies are conducted so as to determine the
feasibility and effectiveness of vaccines developed on cell cultures for
example de VERO cells [56,57]; (3) the last one is focused in improving
the immunogenicity of the antigen, by using different kind of
adjuvants such as alum or those based on the squalene-containing
emulsion MF59 [58] or the oil-in-water emulsion Adjuvant System
AS03 [59].

The current trend in research on influenza vaccines is to achieve an
acceptable platform able to generate in a short time and with high
performance, an antigen that guarantees to confer to the patient an
adequate immunity. Current technologies are allowing to generate
increasingly complex modifications such that there are expectations of
developing cells or systems with specific enzymatic machinery,
achieving biotechnological products with a glycosylation identical to
humans, where biosynthesis of better antigens for vaccines against
influenza will be easily achieved.
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