

**Review Article** 

**Open Access** 

# The Efficacy and Safety of Bismuth-Based Quadruple Therapy for *Helicobacter Pylori* Infection: A Meta-Analysis

Yifeng Zhou<sup>1\*</sup>, Yongping Zhang<sup>2</sup>, Qi Zhang<sup>3</sup>, Xiaofeng Zhang<sup>3</sup> and Qiang Cai<sup>3</sup>

<sup>1</sup>Nanjing Medical University, China <sup>2</sup>Xin Chang People's Hospital, China <sup>3</sup>Emory University, School of Medicine, China

### Abstract

**Objective:** To assess the safety and efficacy of bismuth-based quadruple therapy for *Helicobacter pylori* (*H. pylori*) infection.

**Methods:** We searched the PubMed, Cochrane and EMBASE databases updated to January 2015 for randomized controlled trials (RCTs) comparing bismuth-based quadruple therapy (Bismuth quadruple therapy) with non-bismuth standard triple therapy (standard therapy) for *H. pylori* infection. Literature qualities were assessed using Cochrane assessment system. Meta-analysis was carried out with Stata 11.0 and Review Manager 5.3. Risk ratio (RR) and their 95% confidence interval (95% CI) were computed. Subgroup analysis and sensitivity analysis were performed. Egger's test was performed to evaluate publication bias among studies.

**Results:** Ten RCTs were eligible and enrolled. In the overall analysis, bismuth quadruple therapy achieved comparable intention-to-treat cure rates (RR = 0.90, 95% Cl: 0.62~1.30, P = 0.57), per-protocol cure rates (RR = 1.29, 95% Cl: 0.54~3.09, P = 0.57), and recrudescence rates (RR = 0.98, 95% Cl: 0.49~1.98, P = 0.96) to the standard triple therapy. Side-effects were also similar between those two therapies (RR = 0.91, 95% Cl: 0.73~1.13, P = 0.40). Moreover, subgroup analysis indicated bismuth quadruple therapy had significantly higher intention-to-treat cure rates (RR = 0.72, 95% Cl: 0.55~0.93, P = 0.01), but comparable per-protocol cure rates (RR = 0.71, 95% Cl: 0.49~1.04, P = 0.08) and side-effects (RR = 0.97, 95% Cl: 0.76~1.23, P = 0.79) to the standard triple therapy.

**Conclusions:** Bismuth quadruple therapy had similar safety to the standard triple therapy, whereas it was more effective than standard triple therapy in the treatment of *H. pylori* infection.

**Keywords:** *Helicobacter pylori*; Bismuth; Quadruple therapy; Standard triple therapy; Meta-analysis; Sub-group analysis

# Introduction

*Helicobacter pylori* (*H. pylori*) has been firstly identified in 1983 from patients with active chronic gastritis [1]. Since then, *H. pylori* infection has been thought intensely related to peptic ulcer disease [2], with incidences range from 0.03% to 0.19% every year [3]. Once *H. pylori* infect the stomach, they can persistently exist for decades in the acidic gastric environment, where they disrupt gastric mucosa, alter the patterns of hormone secretion, and ultimately lead to chronic gastritis and peptic ulcer disease [4]. More dangerously, chronic infection of *H. pylori* may result in the development of malignancies of stomach via complex interactions [5], the elimination of infected *H. pylori* can inversely exert a preventative effect on gastric carcinogenesis [6]. Thus, there is an urgent need to effectively eradicate the infected *H. pylori* in patients with gastrointestinal diseases.

Multiple combination therapies to treat *H. pylori* infection are available clinically. Previously, the standard triple therapy consisting of a proton pump inhibitor (PPI), clarithromycin (C) and amoxicillin (A) is usually used as the first-line regimen for peptic ulcer with H. Pylori infection [7]. However, a recent study reveals that the resistance of *H. pylori* to C has exceeded 80% [8]. Due to the widespread occurrences of antibiotic resistance, the overall eradication rates of infected *H. pylori* by employing the standard therapy has dropped to an unacceptable level at 66.6% [9]. Thereafter, a bismuth quadruple therapy emerges as an alternative therapy to the widely used standard triple therapy with the advantages of cost-effectiveness [10,11].

A few studies have been performed to evaluate the efficacy and safety of bismuth quadruple therapy for *H. pylori* infection. However,

the results from those studies were inconsistent Two studies showed that the bismuth quadruple therapy has higher eradication rates than the standard triple therapy [11,12], other studies demonstrated that the bismuth quadruple therapy has lower eradication rates of *H. pylori* than the standard triple therapy [13-15]. Moreover, a few meta-analyses also had inconsistent conclusions. Two of the meta-analysis studies revealed that bismuth quadruple therapy is less tolerated and less efficient than levofloxacin or moxifloxacin-based triple therapy [16,17], one meta-analysis indicates that the bismuth quadruple therapy [18].

Thus, we conducted an updated meta-analysis, with more outcome measurements, and stricter inclusion/exclusion criteria, in order to get a more comprehensive view of efficacy and safety of the bismuth quadruple therapy.

## Methods

#### Literature search

Literatures were identified by searching the electronic databases

\*Corresponding author: Yifeng Zhou, Professor of Medicine, Nanjing Medical University, 140 Hanzhong Rd, Gulou, Nanjing, Jiangsu, China, 210029, Tel: +86 25 8686 2618; E-mail: zyf3136@vip.qq.com

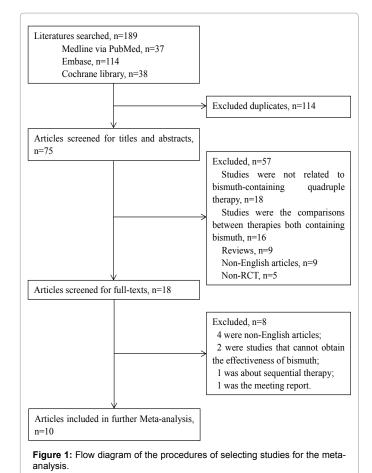
Received March 19, 2015; Accepted June 25, 2015; Published June 27, 2015

**Citation:** Zhou Y, Zhang Y, Zhang Q, Zhang X, Cai Q (2015) The Efficacy and Safety of Bismuth-Based Quadruple Therapy for *Helicobacter Pylori* Infection: A Meta-Analysis. Pharm Anal Acta 6: 382. doi:10.4172/21532435.1000382

**Copyright:** © 2015 Zhou Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PubMed, EMBASE (Excerpt Medica Database), and Cochrane library from their establishment to January 2015. Also, literatures were traced back to obtain the related randomized controlled trials (RCTs). The key search terms were "*Helicobacter Pylori*" or "*H. pylori*" or "*HP*" And "peptic ulcer" or "PU" And "quadruple" And "bismuth" And "random".

#### Inclusion and exclusion criteria


The inclusion criteria in the meta-analysis were: (1) studies were RCTs; (2) participants in the study were patients with *H. pylori* infection; (3) studies involved the comparison of bismuth quadruple therapy (study group) and the standard triple therapy (control group); (4) studies presented the outcomes such as eradication rates of *H. pylori* infection or side effects of the therapy; (5) studies with more comprehensive data and higher quality were selected when it has multiple publication versions; (6) Studies were published in English. On the contrary, the exclusion criteria were: (1) publications were non-original studies, such as reviews, conference abstracts and letters; (2) studies compared the efficacy and side effects of bismuth quadruple therapy with different intervention duration; (3) studies compared between bismuth quadruple therapy with dual therapy, bismuth-containing triple therapy, sequential therapy or other bismuth-based quadruple therapy.

#### Data extraction and quality assessment

On the basis of the pre-defined protocol, data were extracted independently by two researchers. Disagreement were resolved by discussion with a third investigator. For every enrolled study, the information listed below was abstracted: research type, research time, the state, the first author name, the year of publication, follow-up time, the population, the number of patients distributed in two groups, the average age, the treatment duration and the outcomes including side-effects and eradication rates of *H. pylori*. The quality of the eligible studies was evaluated based on Cochrane assessment system containing 7 evaluation parameters [19].

#### Statistical analysis

Statistical analysis was conducted by Stata 11.0 (Stata Corp, http:// www.stata.com/) and Review Manager 5.3 software (http://tech. cochrane.org/revman). For each eligible study, the risk ratio (RR) and corresponding 95% confidence interval (95% CI) were calculated to assess efficacy and side effects of the two kinds of therapies. Statistical heterogeneities among studies were estimated on the basis of Cochrane based Q statistical analysis, and the P<0.05 and I<sup>2</sup> >50% represented statistically significant heterogeneity [20]. The summary RRs were calculated by random effects model if there was significant heterogeneity among studies [21] and otherwise, the fixed effect model was employed [22]. Subgroup analysis was performed stratified by the types of triple therapy, in which we only studied the outcomes with the standard triple therapy as the control group. The fixed effects model was chosen for intention-to-treat cure rates, per-protocol cure rates as well as side effects analysis (P > 0.05,  $I^2 < 50\%$ ). The fixed effects model was chosen for intention-to-treat cure rates, per-protocol cure rates as well as side effects analysis (P>0.05, I2<50%). To identify the source of heterogeneity, meta-regression analysis was performed based on various therapy durations of bismuth quadruple therapy (<7, 7, 10 and 14 days) and the standard triple therapy (7, 10 and 14 days) [23]. Egger's test was employed to evaluate publication biases and P<0.1 was selected as the criterion for potential bias [24]. In addition, sensitivity analysis was performed to evaluate the stability of the pooled results by comparing the pooled RR under random effect model and fixed effect model for each outcome.



#### Results

#### **Eligible studies**

In total, 75 potentially relevant studies published in English were identified after removing the duplicated publications from the 189 studies from the preliminary screening, whereas only 10 RCTs [13-15,25-31] met with the inclusion criteria. The detailed selection process is shown in Figure 1 and the characteristics of the selected study were presented in Table 1. There were 1722 *H. pylori*-infected patients consisting of 837 treated with bismuth quadruple therapy and 885 treated by the standard triple therapy. The studies were performed in various countries including Spain, Korea, USA, China, Iran and India. In most of the enrolled studies, patients in the study group were treated with the Bismuth quadruple therapy consisting of 2PPI, A and bismuth [13-15,25-28] and in five of the enrolled studies [13, 25,28-30], patients in control group were treated with the combined regimen of PAC, the standard triple therapy.

#### Quality assessment

Base on the Cochrane assessment system, the results of quality assessment were shown in Figure 2. As most of the enrolled studies did not describe the detailed explanation on how to generate random variables and whether double-blind analysis was performed, the selection bias and performance bias of the studies were considered as unknown risks. Besides, due to the lack of enough information, the reporting bias was also defined as unknown risks. Additionally, among all the enrolled studies, only one study [14] was identified with huge

## Page 3 of 8

|                     |                         |                 |           |         | Bismuth-containing quadruple therapy                      |              |                               |                                                                                | Control         |              |                  |                                                                                       |                 |
|---------------------|-------------------------|-----------------|-----------|---------|-----------------------------------------------------------|--------------|-------------------------------|--------------------------------------------------------------------------------|-----------------|--------------|------------------|---------------------------------------------------------------------------------------|-----------------|
| Author, year        | Study<br>type           | Study period    | Follow-up | Country | Population                                                | n (M/F)      | Age                           | Drug                                                                           | Therapy<br>time | n (M/F)      | Age              | Drug                                                                                  | Therapy<br>time |
| Calvet 1998         | RCT                     | 1994.07-1996.02 | 12 months | Spain   | Patients with PU and <i>H. pylori</i> positive            | 42 (35/7)    | 51.9±15.5 <sup>1</sup>        | O 40 mg b.i.d.;<br>A 2500mg once daily;<br>M 500 mg t.i.d.;<br>B 360 mg t.i.d. | 2 days          | 39 (27/12)   | 52.5±13.9        | O 20 mg b.i.d.;<br>A 1000 mg t.i.d.;<br>M 500 mg t.i.d.                               | 14 days         |
| Calvet 2002         | RCT                     | 1999.04-2001.01 | 6 months  | Spain   | Patients diagnosed of<br>PU and <i>H. pylori</i>          | 168 (120/48) | 52.6±17.4                     | O 20 mg b.i.d.;<br>T 500 mg t.i.d.;<br>M 500 mg t.i.d.;<br>B: 120 mg t.i.d.    | 7 days          | 171 (117/54) | 51.5±15.9        | O 20 mg b.i.d.;<br>A 1000 mg t.i.d.;<br>C 500 mg t.i.d.                               | 7 days          |
| Kim 2013            | RCT                     | 2003-2010       | 12 months | Korea   | Patients with persistent<br><i>H. pylori</i> infection    | 59 (35/24)   | 56.1±9.3                      | E 20 mg b.i.d.;<br>M 500 mg t.i.d.;<br>T 500 mg q.i.d.;<br>B 300 mg q.i.d.;    | 14 days         | 116 (69/47)  | 56.8±9.5         | M 400 mg q.i.d.;<br>E 20 mg b.i.d.;<br>A 1000 mg b.i.d.                               | 14 days         |
| Lara 2003           | RCT                     | 1998.08-2000.12 | NR        | USA     | Patients with dyspepsia<br>and <i>H. pylori</i> infection | 80 (36/44)   | 46±12                         | M 500 mg q.i.d.;<br>A 2000 mg q.i.d.;<br>Lan 30*2mg once;<br>B 262*2 mg q.i.d. | 7 day           | 80 (33/47)   | 53±16            | C 500 mg b.i.d.;<br>A 500*2 mg b.i.d.;<br>Lan 30 mg b.i.d.                            | 7 days          |
| Liao 2013           | RCT                     | 2012            | NR        | China   | Patients diagnosed of <i>H.</i><br><i>pylori</i> positive | 80 (43/37)   | 46.7 (23-<br>78) <sup>2</sup> | Lan 30 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>Lev 500 mg once;<br>B 220 mg b.i.d.  | 14 days         | 81 (46/35)   | 48.9 (23-<br>75) | Lan 30 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>Lev 500 mg once                             | 14 days         |
| Momeni<br>2014      | Double-<br>blind<br>RCT | NR              | NR        | Iran    | Patients diagnosed of<br>PU and <i>H. pylori</i> positive | 30 (13/17)   | 40.8±15.5                     | O 20 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>M 500 mg b.i.d.;<br>B 262*2 mg b.i.d.  | NR              | 30 (14/16)   | 42.2 ± 15.8      | M 500 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>O 20 mg b.i.d.;<br>licorice 380 mg<br>b.i.d. | NR              |
| Pai 2003            | RCT                     | NR              | NR        | India   | Patients with <i>H. pylori</i> infection                  | 33 (32/1)    | 37.5 (18-64)                  | Lan 30 mg b.i.d.;<br>M 400 mg t.i.d.;<br>T 500 mg q.i.d.;<br>B 120 mg q.i.d.   | 10 days         | 35 (32/3)    | 41.5 (19-<br>69) | Lan 30 mg b.i.d.;<br>A 500 mg q.i.d.;<br>C 500 mg b.i.d.                              | 10 days         |
| Raoufi 2014         | RCT                     | 2012.07-2012.12 | 6 months  | Iran    | Patient with persistent dispepsia                         | 55           | NR                            | F 100 mg q.i.d.;<br>T 250 mg q.i.d.;<br>O 20 mg b.i.d.;<br>B 120 mg q.i.d.     | 14 days         | 55           | NR               | O 20 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>C 500 mg b.i.d.                               | 14 days         |
| Seyedmajidi<br>2013 | Double-<br>blind<br>RCT | 2007.03-2011.09 | NR        | Iran    | Patients diagnosed of <i>H. pylori</i> positive           | 110 (40/60)  | 44.0±3.2                      | O 20 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>M 500 mg b.i.d.;<br>B 240 mg b.i.d.    | 14 days         | 98 (55/43)   | 43.3±3.3         | O 20 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>C 500 mg b.i.d.                               | 14 days         |
| Xie 2014            | Multi-<br>center<br>RCT | 2010.01-2011.06 | NR        | China   | Patients with <i>H. pylori</i> infection                  | 180 (118/62) | 39.6±13.6                     | R 10 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>F 100 mg b.i.d.;<br>B 220 mg b.i,d,    | 7 days          | 180 (105/75) | 41.4±12.6        | R 10 mg b.i.d.;<br>A 1000 mg b.i.d.;<br>F 100 mg b.i.d.                               | 7 days          |

Abbreviations: RCT: randomized controlled trial; M/F: male/female; PU: peptic ulcer; b.i.d.: bis in die (=twice a day); t.i.d.: ter in die (=three times a day); q.i.d.: quater in die (=four times a day); B: bismuth; O: omeprazole; A: amoxicillin; M: metronidazole; T: tetracycline; C: clarithromycin; E: esomeprazole; Lan: lansoprazole; Lev: levofloxacin; F: furazolidone; R: rabeprazole; NR: not reported.

1 Data were given as mean±SD; 2 Data were given as mean (range).

Table 1: Characteristics of the selected studies.

bias risk and low quality for the lack of intention-to-treat analysis and lack of comprehensive description. In summary, the qualities of the enrolled studies were average.

## **Overall analysis**

In overall analysis, a total of 4 outcomes were compared between the study group and the control group, including per-protocol cure rates, intention-to-treat cure rates, recrudescence rates and side-effects. Random effects model was selected for per-protocol cure rates and intention-to-treat cure rates analysis (P<0.05, I<sup>2</sup>>50%). On the other hand, fixed effects model was chosen for recrudescence rates and side effects analysis (P > 0.05, I<sup>2</sup><50%). For intention to treat cure rates and per-protocol cure rates analysis, 8 studies and 6 studies were employed respectively. Accordingly, the meta-analysis revealed there were comparable intention to treat cure rates (RR = 0.90, 95% CI: 0.62~1.30, P = 0.57) (Figure 3A) and per-protocol cure rates (RR = 1.29, 95% CI:  $0.54 \sim 3.09$ , P = 0.57) (Figure 3B) between the two groups. Besides, 3 studies reported that the recrudescence rates was also similar between the two groups (RR = 0.98, 95% CI:  $0.49 \sim 1.98$ , P = 0.96) (Figure 3C). Additionally, by analyzing 8 relative studies, the two therapies showed similar side effects (RR = 0.91, 95% CI: 0.73~1.13, P = 0.40) (Figure 3D). Based on the Egger's studies, there was no obvious publication bias between studies (P > 0.1).

## Subgroup analysis

In total, 5 studies compared intention-to-treat cure rates and showed the rate was significantly higher in the bismuth quadruple therapy than the standard triple therapy (RR = 0.72, 95% CI: 0.55~0.93, P =0.01) (Figure 4A). Besides, 3 studies reported that bismuth quadruple therapy achieved a comparable per-protocol cure rates to the standard triple therapy (RR = 0.71, 95% CI: 0.49~1.04, P = 0.08) (Figure 4B). In addition, 5 studies compared the side effects and demonstrated no significant difference in side effects between the two therapies (RR = 0.97, 95% CI: 0.76~1.23, P = 0.79) (Figure 4C).

#### Meta-regression analysis

For intention-to-treat cure rates, one of the main outcomes in this study, there was significant heterogeneity between studies in overall analysis; therefore meta-regression analysis was performed to investigate the sources of heterogeneity. However, the therapy duration did not induce significant heterogeneity (P > 0.05) (Table 2).

## Sensitivity analysis

Based on the sensitivity analysis, the pooled RR of the intentionto-treat cure rates, per-protocol cure rates, recrudescence rates and side effect using random effects model and fixed effects model were

## Page 4 of 8

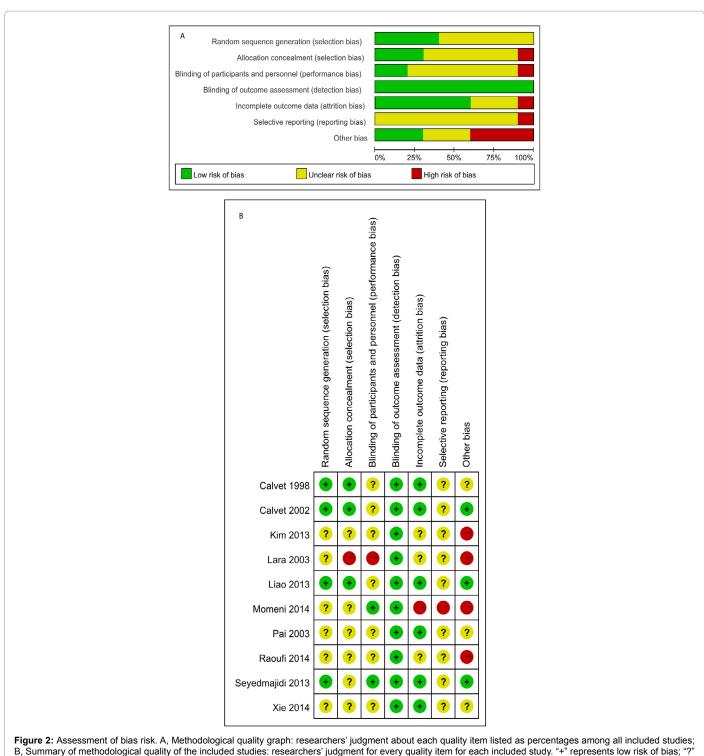



Figure 2: Assessment of bias risk. A, Methodological quality graph: researchers' judgment about each quality item listed as percentages among all included studies; B, Summary of methodological quality of the included studies: researchers' judgment for every quality item for each included study. "+" represents low risk of bias; "?" represents unclear risk of bias; "-" represents high risk of bias.

| Log RR                | Coef. | Std. Err. | t     | P> t  | [95% Conf. Interval] |
|-----------------------|-------|-----------|-------|-------|----------------------|
| Therapy time_ case    | -0.51 | 0.27      | -1.89 | 0.118 | (-1.19, 0.18)        |
| Therapy time_ control | 0.40  | 0.29      | 1.51  | 0.193 | (-0.29, 1.09)        |
| _cons                 | -0.11 | 0.29      | -0.39 | 0.715 | (-0.87, 0.64)        |

Table 2: Meta regression.

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                | case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                              | contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           |                                                                                                                                                                                                                                                                     | Risk Ratio                                                                                                                                                                                                                                              | Risk Ratio                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | Weight                                                                                                                                                                                                                                                              | M-H, Random, 95% Cl                                                                                                                                                                                                                                     | M-H, Random, 95% Cl                                    |
| Calvet 1998                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                        | 7.3%                                                                                                                                                                                                                                                                | 4.02 [1.24, 13.06]                                                                                                                                                                                                                                      |                                                        |
| Calvet 2002                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171                                                                                                                                       | 20.0%                                                                                                                                                                                                                                                               | 0.76 [0.49, 1.16]                                                                                                                                                                                                                                       |                                                        |
| Lara 2003                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73                                                                                                                                        | 7.3%                                                                                                                                                                                                                                                                | 0.54 [0.17, 1.77]                                                                                                                                                                                                                                       |                                                        |
| Liao 2013                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81                                                                                                                                        | 13.0%                                                                                                                                                                                                                                                               | 0.72 [0.34, 1.53]                                                                                                                                                                                                                                       |                                                        |
| Momeni 2014                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                        | 14.9%                                                                                                                                                                                                                                                               | 1.30 [0.68, 2.49]                                                                                                                                                                                                                                       | - <b>-</b>                                             |
| Pai 2003                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                        | 10.3%                                                                                                                                                                                                                                                               | 1.59 [0.64, 3.98]                                                                                                                                                                                                                                       |                                                        |
| Raoufi 2014                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                        | 6.7%                                                                                                                                                                                                                                                                | 0.33 [0.10, 1.17]                                                                                                                                                                                                                                       | <b>-</b>                                               |
| Xie 2014                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                       | 20.6%                                                                                                                                                                                                                                                               | 0.67 [0.45, 1.01]                                                                                                                                                                                                                                       |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                       | 20.070                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                        |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 665                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 664                                                                                                                                       | 100.0%                                                                                                                                                                                                                                                              | 0.90 [0.62, 1.30]                                                                                                                                                                                                                                       | •                                                      |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                        |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 14.52                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2, df = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P = 0.0                                                                                                                                  | )4); l² = 529                                                                                                                                                                                                                                                       | %                                                                                                                                                                                                                                                       |                                                        |
| Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         | 0.05 0.2 1 5 20                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         | Favours [case] Favours [control]                       |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                     | Dist. D. C.                                                                                                                                                                                                                                             |                                                        |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                | case<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           | Weight                                                                                                                                                                                                                                                              | Risk Ratio<br>M-H, Random, 95% Cl                                                                                                                                                                                                                       | Risk Ratio<br>M-H. Random, 95% Cl                      |
| • • •                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | -                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                        |
| Calvet 1998                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           | 13.3%                                                                                                                                                                                                                                                               | 5.56 [1.33, 23.25]                                                                                                                                                                                                                                      | =                                                      |
| Calvet 2002                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153                                                                                                                                       |                                                                                                                                                                                                                                                                     | 0.84 [0.46, 1.51]                                                                                                                                                                                                                                       |                                                        |
| Liao 2013                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                                                                                                                                        | 15.6%                                                                                                                                                                                                                                                               | 0.38 [0.13, 1.15]                                                                                                                                                                                                                                       |                                                        |
| Pai 2003                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                        | 14.3%                                                                                                                                                                                                                                                               | 1.18 [0.32, 4.29]                                                                                                                                                                                                                                       |                                                        |
| Seyedmajidi 2013                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                                                                                                                                        | 18.6%                                                                                                                                                                                                                                                               | 4.79 [2.47, 9.28]                                                                                                                                                                                                                                       |                                                        |
| Xie 2014                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165                                                                                                                                       | 19.2%                                                                                                                                                                                                                                                               | 0.57 [0.33, 0.98]                                                                                                                                                                                                                                       | -=-                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                        |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 567                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 565                                                                                                                                       | 100.0%                                                                                                                                                                                                                                                              | 1.29 [0.54, 3.09]                                                                                                                                                                                                                                       | •                                                      |
| <b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                       | 100<br>0.96; Chi²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78<br>7, df = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                     | 1.29 [0.54, 3.09]<br>85%                                                                                                                                                                                                                                | ◆<br>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓             |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.96; Chi²<br>Z = 0.57 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 34.4<br>P = 0.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 7, df = 5<br>7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | 00001); l² =                                                                                                                                                                                                                                                        | 85%                                                                                                                                                                                                                                                     | 0.005 0.1 1 10 200<br>Favours [case] Favours [control] |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C                                                                                                                                                                                                                                                                                                                                                               | 0.96; Chi²<br>Z = 0.57 (I<br>case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 34.4<br>P = 0.5<br>cont                                                                                                                                                                                                                                                                                                                                                                                                                    | 7, df = 5<br>7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P < 0.0                                                                                                                                  | 00001); l² =<br>Risk Rat                                                                                                                                                                                                                                            | : 85%<br>tio Risk R                                                                                                                                                                                                                                     | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: .<br>C<br><u>Study or Subgroup</u> Ev                                                                                                                                                                                                                                                                                                                              | 0.96; Chi <sup>2</sup><br>Z = 0.57 (l<br>case<br><u>vents_Total</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 34.4<br>P = 0.5<br>cont<br>Events                                                                                                                                                                                                                                                                                                                                                                                                          | 7, df = 5<br>7)<br>trol<br>s Total V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (P < 0.0                                                                                                                                  | 00001); l² =<br>Risk Rat<br><u>M-H. Fixed</u>                                                                                                                                                                                                                       | : 85%<br>tio Risk R<br><u>. 95% Cl M-H, Fixe</u> c                                                                                                                                                                                                      | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: .                                                                                                                                                                                                                                                                                                                                                                  | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>rents Total</u><br>0 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 34.4<br>P = 0.5<br>cont<br><u>Events</u>                                                                                                                                                                                                                                                                                                                                                                                                   | 7, df = 5<br>7)<br>trol<br><u>s Total N</u><br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (P < 0.0<br><u>Weight</u><br>9.7%                                                                                                         | 00001); l <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0                                                                                                                                                                                              | : 85%<br>tio Risk R<br>. <u>95% Cl M-H, Fixeo</u><br>2, 8.71]                                                                                                                                                                                           | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: .<br>C<br><u>Study or Subgroup</u> Ev<br>Calvet 1998                                                                                                                                                                                                                                                                                                               | 0.96; Chi <sup>2</sup><br>Z = 0.57 (l<br>case<br><u>rents Total</u><br>0 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 34.4<br>P = 0.5<br>cont<br><u>Events</u>                                                                                                                                                                                                                                                                                                                                                                                                   | 7, df = 5<br>7)<br>trol<br><u>s Total N</u><br>29<br>) 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P < 0.0                                                                                                                                  | 00001); l² =<br>Risk Rat<br><u>M-H. Fixed</u>                                                                                                                                                                                                                       | : 85%<br>iio Risk R<br>, <u>95% Cl M-H, Fixeo</u><br>2, 8.71]<br>178.25]                                                                                                                                                                                | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: A<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)                                                                                                                                                                                                                                                                         | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>rents Total</u><br>0 26<br>4 84<br>7 59<br>169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 34.4<br>P = 0.5<br>cont<br><u>Events</u><br>1<br>(<br>19                                                                                                                                                                                                                                                                                                                                                                                   | 7, df = 5<br>7)<br>trol<br><u>5 Total 1</u><br>29<br>9 91<br>9 116<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%                                                                                                 | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,                                                                                                                                                                               | tio Risk R<br>. <u>95% Cl M-H. Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]                                                                                                                                                                             | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                         | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>vents Total</u><br>0 26<br>4 84<br>7 59<br>169<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 34.4<br>P = 0.5<br>cont<br><u>Events</u><br>1<br>0<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                             | 7, df = 5<br>7)<br>strol<br><u>s Total 1</u><br>29<br>9 91<br>9 116<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%                                                                                        | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3                                                                                                                                                                  | tio Risk R<br>. <u>95% Cl M-H. Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]                                                                                                                                                                             | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,                                                                                                                                                                                                 | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>vents Total</u><br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 34.4'<br>P = 0.5<br>cont<br><u>Events</u><br>1<br>1<br>20<br>0.19); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                         | 7, df = 5<br>7)<br>strol<br><u>s Total 1</u><br>29<br>9 91<br>9 116<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%                                                                                        | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3                                                                                                                                                                  | tio Risk R<br>. <u>95% Cl M-H. Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]                                                                                                                                                                             | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                         | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>vents Total</u><br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 34.4'<br>P = 0.5<br>cont<br><u>Events</u><br>1<br>1<br>20<br>0.19); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                         | 7, df = 5<br>7)<br>strol<br><u>s Total 1</u><br>29<br>9 91<br>9 116<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%                                                                                        | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3                                                                                                                                                                  | io Risk R<br><u>.95% Cl M-H, Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]                                                                                                                                                                   | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,                                                                                                                                                                                                 | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>vents Total</u><br>0 26<br>4 84<br>7 59<br><b>169</b><br>11<br>, df = 2 (P =<br>0.04 (P = 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 34.4<br>P = 0.5<br><u>cont</u><br><u>tvents</u><br>19<br>19<br>20<br>0.19); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                 | 7, df = 5<br>7)<br>trol<br><u>s Total 1</u><br>29<br>9 91<br>9 116<br>236<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%                                                                                        | 00001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.49                                                                                                                                             | E 85%<br>Eio Risk R<br><u>95% Cl M-H. Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]                                                                                                                         | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>C<br><u>Study or Subgroup</u> Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D                                                                                                                                                                | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>0 = 26<br>4 = 84<br>7 = 59<br>169<br>11<br>, df = 2 (P = 0.5<br>0.04 (P = 0.5)<br>case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 34.4<br>P = 0.5<br><u>cont</u><br><u>tvents</u><br>19<br>0<br>19<br>0<br>19<br>19<br>0<br>19<br>0<br>19<br>19<br>0<br>19<br>19<br>0<br>19<br>0<br>19<br>19<br>0<br>19<br>19<br>0<br>19<br>10<br>19<br>10<br>19<br>10<br>19<br>10<br>19<br>10<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                           | 7, df = 5<br>7)<br>trol<br><u>5 Total 1</u><br>29<br>9 91<br>9 116<br>236<br>236<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%                                                                                               | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>Risk Ra                                                                                                                                         | tio Risk R<br>.95% Cl M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>ttio Risk I                                                                                                                         | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D                                                                                                                                                                       | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br><u>vents Total</u><br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =<br>0.04 (P = 0.5<br>case<br><u>vents Tota</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 34.4<br>P = 0.5<br><u>Events</u><br>1<br>(<br>1<br>20<br>0.19); I <sup>2</sup><br>6)<br>cor<br><u>I Event</u>                                                                                                                                                                                                                                                                                                                              | 7, df = 5<br>7)<br>trol<br><u>s Total 1</u><br>29<br>9 91<br>9 116<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%                                                                                               | 00001); I <sup>2</sup> =<br><u>Risk Rat</u><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.49<br>Risk Ra<br><u>M-H. Fixed</u>                                                                                                             | tio Risk R<br>. 95% Cl M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>ttio Risk I<br>d, 95% Cl M-H, Fixer                                                                                                | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Ev<br>Calvet 1998                                                                                                                         | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>$\frac{10}{2}$ = 0.57 (I<br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P = 0.5<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 34.4<br>P = 0.5<br><u>Events</u><br>1<br>(<br>0<br>19<br>20<br>0.19); I <sup>2</sup><br>36)<br><b>cor</b><br>1 <u>Event</u><br>2 1                                                                                                                                                                                                                                                                                                         | 7, df = 5<br>7)<br>trol<br><u>5 Total 1</u><br>29<br>9 91<br>116<br>236<br>236<br>236<br>116<br>236<br>5<br>116<br>236<br>236<br>5<br>116<br>236<br>236<br>5<br>116<br>236<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>116<br>236<br>5<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>Weight<br>13.5%                                                                            | 00001); I <sup>2</sup> =<br><u>Risk Rat</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>Risk Ra<br><u>M-H, Fixer</u><br>0.64 [0.3                                                                                                                     | tio Risk R<br>.95% CI M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>1<br>tio Risk I<br>d. 95% CI M-H, Fixer<br>34, 1.20]                                                                                | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002                                                                                                                   | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>rents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =<br>0.04 (P = 0.9<br>case<br>vents Tota<br>11 42<br>50 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>(<br>1<br>20<br>0.19); I <sup>2</sup><br>06)<br>Cor<br>1 Event<br>2 1<br>3 5                                                                                                                                                                                                                                                                                                                     | 7, df = 5<br>7)<br>trol<br><u>5 Total N</u><br>29<br>9 116<br>236<br>236<br>236<br>116<br>236<br>236<br>40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>Weight<br>13.5%<br>43.5%                                                                   | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>Risk Ra<br><u>M-H. Fixed</u><br>0.64 [0.3<br>0.94 [0.6                                                                                          | tio Risk R<br>.95% Cl M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>1<br>tio Risk I<br>d. 95% Cl M-H, Fixer<br>34, 1.20]<br>68, 1.30]                                                                   | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003                                                                                                    | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>rents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>0<br>1<br>20<br>0.19); I <sup>2</sup><br>06)<br>Cor<br>1<br>Event<br>2<br>1<br>3<br>5<br>7<br>2                                                                                                                                                                                                                                                                                                  | 7, df = 5<br>7)<br>trol<br><u>s Total 1</u><br>  29<br>) 91<br>  216<br>236<br>-<br>)<br>= 40%<br>trol<br>ts Total<br>6 39<br>4 171<br>.7 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>Weight<br>13.5%<br>43.5%<br>22.5%                                                          | 00001); I <sup>2</sup> =<br>Risk Rat<br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>Risk Rat<br><u>M-H. Fixed</u><br>0.64 [0.3<br>0.94 [0.4<br>0.81 [0.5]                                                                           | tio Risk R<br>.95% Cl M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>ttio Risk I<br>4.95% Cl M-H. Fixe<br>34, 1.20]<br>68, 1.30]                                                                         | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002                                                                                                                   | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of = 2 (P = 0.57)<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 4:<br>50 160<br>23 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>06)<br>Cor<br>I Event<br>2 1<br>3 5<br>7 2<br>0                                                                                                                                                                                                                                                                                                        | 7, df = 5<br>7)<br>trol<br><u>5 Total N</u><br>29<br>9 116<br>236<br>236<br>236<br>116<br>236<br>236<br>40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>Weight<br>13.5%<br>43.5%                                                                   | Risk Rat<br>M-H. Fixed<br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>Risk Ra<br>M-H. Fixed<br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.3<br>0.68 [0.2                                                                                                          | tio Risk R<br>.95% Cl M-H, Fixer<br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>1<br>tio Risk I<br>d. 95% Cl M-H, Fixer<br>34, 1.20]<br>68, 1.30]                                                                   | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013                                                                                       | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of = 2 (P =<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 42<br>50 161<br>23 77<br>4 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 34.4<br>P = 0.5<br>cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>06)<br>cor<br>1<br>Event<br>2<br>1<br>3<br>5<br>7<br>2<br>0                                                                                                                                                                                                                                                                                            | 7, df = 5<br>7, df = 7<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>Weight<br>13.5%<br>43.5%<br>22.5%                                                          | 200001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.78 [0.43<br>0.98 [0.43<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.5<br>0.68 [0.2]<br>Not e                        | tio Risk R<br><u>95% Cl M-H, Fixer</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>tio Risk I<br>d, 95% Cl M-H, Fixe<br>34, 1.20]<br>51, 1.27]<br>20, 2.30]                                                      | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014                                                                        | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>pents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>, df = 2 (P =<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 4;<br>50 16;<br>23 7;<br>4 8;<br>0 3;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 34.4<br>P = 0.5<br>cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>06)<br>cor<br>1<br>Event<br>2<br>1<br>5<br>5<br>7<br>2<br>0<br>3                                                                                                                                                                                                                                                                                       | 7, df = 5<br>7, df = 7<br>rol<br>rol<br>29<br>116<br>236<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol  | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br><u>Weightt</u><br>13.5%<br>43.5%<br>22.5%<br>4.8%                                          | 200001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.78 [0.43<br>0.98 [0.43<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.5<br>0.68 [0.2]<br>Not e                        | tio Risk R<br><u>95% Cl M-H, Fixe</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>tio Risk<br>d. 95% Cl M-H, Fixe<br>34, 1.20]<br>68, 1.30]<br>51, 1.27]<br>20, 2.30]<br>stimable<br>39, 4.52]                   | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup E<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014<br>Pai 2003                                                               | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>vents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of f = 2 (P =<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 42<br>50 164<br>23 77<br>4 86<br>0 36<br>5 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 34.4<br>P = 0.5<br>cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); l <sup>2</sup><br>20<br>0.19); l <sup>2</sup><br>20<br>0.19); l <sup>2</sup><br>20<br>0.19); l <sup>2</sup><br>20<br>1<br>35<br>5                                                                                                                                                                                                                                        | 7, df = 5<br>7, df = 7<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol<br>rol | (P < 0.0<br>9.7%<br>3.3%<br>87.1%<br>100.0%<br>100.0%<br>¥43.5%<br>43.5%<br>43.5%<br>43.5%<br>43.5%<br>43.2%                              | Risk Rat<br>M-H, Fixed<br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>0.98 [0.43<br>0.98 [0.43<br>0.94 [0.6<br>0.64 [0.3<br>0.81 [0.6<br>0.68 [0.2<br>Not e<br>1.33 [0.3<br>7.00 [0.37,                                                                  | tio Risk R<br><u>95% Cl M-H, Fixe</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>tio Risk<br>d. 95% Cl M-H, Fixe<br>34, 1.20]<br>68, 1.30]<br>51, 1.27]<br>20, 2.30]<br>stimable<br>39, 4.52]                   | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014<br>Pai 2003<br>Raoufi 2014                                               | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>vents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of f = 2 (P =<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 42<br>50 164<br>23 77<br>4 84<br>0 36<br>5 33<br>3 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>Cor<br>1<br>Event<br>2<br>1<br>5<br>7<br>2<br>2<br>1<br>3<br>5<br>7<br>2<br>0<br>0<br>3<br>3<br>5<br>7<br>2<br>0<br>0<br>1                                                                                                                                                                                                                             | 7, df = 5<br>7, df = 5<br>7, df = 7<br>5 Total $\sqrt{29}$<br>9 91<br>9 116<br>236<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%<br>100.0%<br><u>Weight</u><br>13.5%<br>43.5%<br>22.5%<br>4.8%<br>3.2%<br>0.4%          | Risk Rat<br>M-H, Fixed<br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>0.98 [0.43<br>0.98 [0.43<br>0.94 [0.6<br>0.64 [0.3<br>0.81 [0.6<br>0.68 [0.2<br>Not e<br>1.33 [0.3<br>7.00 [0.37,                                                                  | tio Risk R<br><u>95% Cl M-H, Fixee</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>tio Risk R<br>0.002 0.1 1<br>Favours [case]<br>tio Risk R<br>34, 1.20]<br>68, 1.30]<br>51, 1.27]<br>20, 2.30]<br>stimable<br>39, 4.52]<br>132.40]<br>54, 2.09] | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014<br>Pai 2003<br>Raoufi 2014<br>Xie 2014                                   | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>ents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>off = 2 (P = 0.5<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>0.04 (P = 0.5)<br>case<br>vents Tota<br>11 4:<br>50 16:<br>23 7;<br>4 8:<br>0 3:<br>16 18:<br>16 18:<br>1 | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>Cor<br>1<br>Event<br>2<br>1<br>5<br>7<br>2<br>2<br>1<br>3<br>5<br>7<br>2<br>0<br>0<br>3<br>3<br>5<br>7<br>2<br>0<br>0<br>1                                                                                                                                                                                                                             | 7, df = 5<br>7, df = 5<br>7, df = 7<br>5 Total 1<br>29<br>9 116<br>236<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>116<br>236<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%<br>100.0%<br><u>Weight</u><br>13.5%<br>43.5%<br>22.5%<br>4.8%<br>3.2%<br>0.4%<br>12.2% | 200001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>0.98 [0.43<br><b>M-H. Fixed</b><br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.4<br>0.68 [0.4]<br>Not e<br>1.33 [0.3<br>7.00 [0.37,<br>1.07 [0.6] | tio Risk R<br><u>95% Cl M-H, Fixee</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>tio Risk R<br>0.002 0.1 1<br>Favours [case]<br>tio Risk R<br>34, 1.20]<br>68, 1.30]<br>51, 1.27]<br>20, 2.30]<br>stimable<br>39, 4.52]<br>132.40]<br>54, 2.09] | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014<br>Pai 2003<br>Raoufi 2014<br>Xie 2014<br>Total (95% CI)                 | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>vents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>off = 2 (P = 0.5<br>0.04 (P = 0.5)<br>case<br>vents Total<br>0 26<br>4 84<br>7 59<br>169<br>11<br>0.04 (P = 0.5)<br>case<br>vents Total<br>0 30<br>5 35<br>16 186<br>5 35<br>16 186<br>665<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 34.4<br>P = 0.5<br>Cont<br>Events<br>1<br>(<br>1<br>2<br>20<br>0.19); I <sup>2</sup><br>6)<br>Cor<br>1<br>Event<br>2<br>1<br>3<br>5<br>7<br>2<br>0<br>0<br>3<br>5<br>5<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>3<br>5<br>7<br>2<br>0<br>0<br>1<br>3<br>5<br>5<br>1<br>2<br>1<br>2<br>1<br>3<br>5<br>7<br>2<br>1<br>2<br>1<br>3<br>5<br>7<br>2<br>1<br>1<br>2<br>1<br>5<br>1<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>5<br>1<br>5<br>1<br>5<br>1 | 7, df = 5<br>7, df = 5<br>7)<br>rol<br>29<br>9 116<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%<br>100.0%<br><u>Weight</u><br>13.5%<br>43.5%<br>22.5%<br>4.8%<br>3.2%<br>0.4%<br>12.2% | 200001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>0.98 [0.43<br><b>M-H. Fixed</b><br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.4<br>0.68 [0.4]<br>Not e<br>1.33 [0.3<br>7.00 [0.37,<br>1.07 [0.6] | tio Risk R<br><u>95% Cl M-H, Fixe</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>0.002 0.1 1<br>Favours [case]<br>10, 002 0.1 1<br>Favours [case]<br>11, 127]<br>20, 2.30]<br>stimable<br>39, 4.52]<br>, 132.40]<br>54, 2.09]<br>73, 1.13]       | Favours [case] Favours [control]                       |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C<br>Study or Subgroup Ev<br>Calvet 1998<br>Calvet 2002<br>Kim 2013<br>Total (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 3.31,<br>Test for overall effect: Z = C<br>D<br>Study or Subgroup Er<br>Calvet 1998<br>Calvet 2002<br>Lara 2003<br>Liao 2013<br>Momeni 2014<br>Pai 2003<br>Raoufi 2014<br>Xie 2014<br>Total (95% CI)<br>Total events | 0.96; Chi <sup>2</sup><br>Z = 0.57 (I<br>case<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of = 2 (P = 0.57)<br>0 26<br>4 84<br>7 59<br>169<br>11<br>of = 2 (P = 0.57)<br>0 26<br>4 84<br>7 59<br>11<br>0 26<br>4 84<br>7 59<br>11<br>0 26<br>4 84<br>0 30<br>5 33<br>3 58<br>16 180<br>668<br>112<br>7, df = 6 (P = 0.57)<br>0 26<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 34.4<br>P = 0.5<br>cont<br>Events<br>1<br>(<br>19<br>20<br>0.19); I <sup>2</sup><br>0<br>0.19); I <sup>2</sup><br>0<br>0<br>1<br>2<br>1<br>5<br>7<br>2<br>1<br>2<br>1<br>3<br>5<br>7<br>2<br>0<br>1<br>3<br>5<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                     | 7, df = 5<br>7, df = 5<br>7)<br>rol<br>29<br>9 116<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P < 0.0<br><u>Weight</u><br>9.7%<br>3.3%<br>87.1%<br>100.0%<br><u>Weight</u><br>13.5%<br>43.5%<br>22.5%<br>4.8%<br>3.2%<br>0.4%<br>12.2% | 200001); I <sup>2</sup> =<br><b>Risk Rat</b><br><u>M-H. Fixed</u><br>0.37 [0.0<br>9.74 [0.53,<br>0.72 [0.3<br>0.98 [0.43<br>0.98 [0.43<br><b>M-H. Fixed</b><br>0.64 [0.3<br>0.94 [0.6<br>0.81 [0.4<br>0.68 [0.4]<br>Not e<br>1.33 [0.3<br>7.00 [0.37,<br>1.07 [0.6] | tio Risk R<br><u>95% Cl M-H. Fixed</u><br>2, 8.71]<br>178.25]<br>2, 1.62]<br>9, 1.98]<br>tio Risk I<br>0.002 0.1 1<br>Favours [case]<br>4, 1.20]<br>68, 1.30]<br>51, 1.27]<br>20, 2.30]<br>stimable<br>39, 4.52]<br>, 132.40]<br>54, 2.09]<br>73, 1.13] | Favours [case] Favours [control]                       |

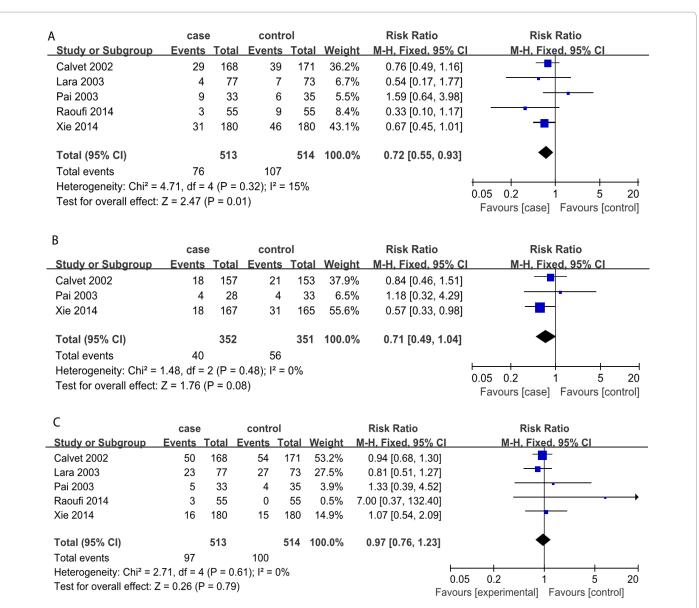



Figure 4: Forest plots of bismuth-based quadruple therapy and standard triple therapy in the subgroup analysis. (A) Forest plot for intention-to-treat cure rates based on fixed effects model; (B) Forest plot for per-protocol cure rates based on fixed effects model; (C) Forest plot for side effects model.

|                               | Random            | effect model | Fixed effect model |      |  |
|-------------------------------|-------------------|--------------|--------------------|------|--|
| Outcomes                      | RR (95% CI)       | Р            | RR (95% CI)        | Р    |  |
| Intention to treat cure rates | 0.90 (0.62, 1.30) | 0.57         | 0.84 (0.67, 1.05)  | 0.12 |  |
| Per-protocol cure rates       | 1.29 (0.54, 3.09) | 0.57         | 1.27 (0.96, 1.68)  | 0.09 |  |
| Recrudescence rate            | 1.09 (0.23, 5.19) | 0.91         | 0.98 (0.49, 1.98)  | 0.96 |  |
| Side effect                   | 0.89 (0.71, 1.11) | 0.29         | 0.91 (0.73, 1.13)  | 0.40 |  |

Abbreviations: RR: risk ratio; CI: confidence interval.

Table 3: Sensitivity analysis (random effect model vs. fixed effect model).

respectively consistent and free of obvious fluctuation, indicating reliable and stable results of this meta-analysis (Table 3).

## Discussion

Recently, the standard triple therapy (non-bismuth-containing triple therapy), commonly used as the first-line therapy, has dropped its therapeutic efficacy in eradicating the infected *H. pylori* due to a

poor patient compliance and bacterial resistance [32]. And bismuth quadruple therapy has been suggested recently as a first-line therapy for *H. pylori* infection [2,33]. Besides, it could also be used as a secondline remedy method after failure of the standard triple therapy [34]. Additional bismuth supplement can effectively reduce bacterial amount and overcome the *H. pylori* resistance to antibacterial agents [35,36]. The bismuth quadruple therapy shows higher *H. pylori* eradication rates

and cost-effectiveness in comparison with non-bismuth-containing triple therapy [11]. And a recent research reports that four bismuth-based quadruple therapies all achieve greater than 90% eradication rates of *H. pylori* infection [37]. Besides, bismuth-based quadruple therapy remains highly effective even if reducing the treatment duration from 14 days to 10 days or decreasing the frequencies used in per day [38,39]. As compared with the commonly used triple therapy without bismuth, the bismuth-based quadruple therapy is reported to achieve comparable eradication rates [40,41]. Notably, by extracting non-bismuth-containing triple therapy as control groups in our meta-analysis, the subgroup analysis results revealed that the bismuth quadruple therapy had a higher intention-to-treat cure rates than the control groups (RR = 0.72, 95% CI: 0.55-0.93, P = 0.01).

Bismuth compounds were concerns about toxicity in some countries, especially as a result of their potential neurological sequelae. Common adverse events include: abdominal pain, dark stools, diarrhoea, dizziness, headache, metallic taste, and so on. Although side effects occurred in 33.6% of subjects with bismuth-containing quadruple therapies, the research report also said that it was mainly caused by antibiotics, especially metronidazole [42]. And the results of the previous meta-analysis revealed that bismuth-based quadruple therapy was as safe as non-bismuth-containing therapy for H. pylori infection. Additionally, it also indicated that the combined regimen of bismuth compounds and antibiotics was well-tolerated in treatment of H. pylori infection [43]. Lee SK pointed out that the repeated bismuth quadruple therapy was also safe after failure of first quadruple therapy [44]. Similar in our meta-analysis, bismuth quadruple therapy had the same safety as non-bismuth-containing triple therapy. Thus, the bismuth quadruple therapy might be used as an alternative therapy for *H. pylori* infection.

The results of our meta-analysis provided more reliable evidence for the assessment of the superiority of bismuth quadruple therapy than non-bismuth-containing triple therapy for the following reasons. Firstly, the enrolled studies were all RCTs from 1998 to 2014, which were representative of the safety and efficacy of the therapies. Secondly, we conducted subgroup analysis and the heterogeneity was not significant. Thirdly, no significant publication bias existed, suggesting a reliable and stable outcome. Nevertheless, there were some limitations in our meta-analysis. Firstly, for the *H. pylori* infection recurrence analysis, only a few studies involved in this index, which may reduce the power of our analysis and thus more attention should be paid for this aspect. Secondly, the general quality of the enrolled study established a barrier to determine the level of risk bias. Finally, we were unable to gather the data that were unpublished, which make it difficult to determine the results tendency.

In conclusion, this systematic and meta-analysis provided strong evidence that the bismuth quadruple therapy had similar safety with non-bismuth-containing triple therapy. Otherwise, bismuth-based quadruple therapy was superior over the non-bismuth-containing triple therapy for its higher eradication rates of *H. pylori* infection.

#### References

- 1. Warren JR, Marshall B (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1: 1273-1275.
- Hernandez C, Serrano C, Einisman H, Villagran A, Pena A, et al. (2014) Peptic ulcer disease in Helicobacter pylori-infected children: clinical findings and mucosal immune response. J Pediatr Gastroenterol Nutr 59: 773-778.
- Sung JE, Kuipers H (2009) EL-SERAG, Systematic review: the global incidence and prevalence of peptic ulcer disease. Alimentary pharmacology & therapeutics 29: 938-946.

- Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clinical microbiology reviews 19: 449-490.
- Wang F, Meng W, Wang B, Qiao L (2014) Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 345: 196-202.
- Take S, Mizuno M, Ishiki K, Hamada F, Yoshida T, et al. (2015) Seventeen-year effects of eradicating Helicobacter pylori on the prevention of gastric cancer in patients with peptic ulcer; a prospective cohort study. J Gastroenterol 50: 638-644.
- Perri F, Festa V, Clemente R, Villani MR, Quitadamo M, et al. (2001) Randomized study of two "rescue" therapies for Helicobacter pylori-infected patients after failure of standard triple therapies. Am J Gastroenterol 96: 58-62.
- Vakil N, Vaira D (2013) Treatment for H. pylori infection: new challenges with antimicrobial resistance. J Clin Gastroenterol 47: 383-388.
- Dacoll C, Balter H, Varela L, Buenavida G, Gonzalez N, et al. (2014) [Evolution of the response to the first-line therapy for Helicobacter pylori infection in Uruguay]. Acta Gastroenterol Latinoam 44: 88-93.
- 10. Laine L, Hunt R, El-Zimaity H, Nguyen B, Osato M, et al. (2003) Bismuthbased quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients: a prospective, randomized, multicenter, North American trial. Am J Gastroenterol 98: 562-567.
- Xu M, Zhang G, Li C (2011) [Efficacy of bismuth-based quadruple therapy as first-line treatment for Helicobacter pylori infection]. Zhejiang Da Xue Xue Bao Yi xue ban 40: 327-331.
- Hong J, Yang HR (2012) Efficacy of Proton Pump Inhibitor-based Triple Therapy and Bismuth-based Quadruple Therapy for Helicobacter pylori Eradication in Korean Children. Pediatr Gastroenterol Hepatol Nutr 15: 237-242.
- Seyedmajidi S, Mirsattari D, Zojaji H, Zanganeh E, Seyyedmajidi M, et al. (2013) Penbactam for Helicobacter pylori eradication: a randomised comparison of quadruple and triple treatment schedules in an Iranian population. Arab J Gastroenterol 14: 1-5.
- Momeni A, Rahimian G, Kiasi A, Amiri M, Kheiri S (2014) Effect of licorice versus bismuth on eradication of Helicobacter pylori in patients with peptic ulcer disease. Pharmacognosy Res 6: 341-344.
- Pai CG, Thomas CP, Biswas A, Rao S, Ramnarayan K (2003) Quadruple therapy for initial eradication of Helicobacter pylori in peptic ulcer: comparison with triple therapy. Indian J Gastroenterol 22: 85-87.
- Saad RJ, Schoenfeld P, Kim HM, Chey WD (2006) Levofloxacin-based triple therapy versus bismuth-based quadruple therapy for persistent Helicobacter pylori infection: a meta-analysis. Am J Gastroenterol 101: 488-496.
- Wu C, Chen X, Liu J, Li MY, Zhang ZQ, et al. (2011) Moxifloxacin-Containing Triple Therapy versus Bismuth-Containing Quadruple Therapy for Second-Line Treatment of Helicobacter pylori Infection: A Meta-Analysis. Helicobacter 16: 131-138.
- Fischbach LS, Zanten, Dickason J (2004) Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-Helicobacter pylori quadruple therapies. Alimentary pharmacology & therapeutics 20: 1071-1082.
- Higgins JP, Green S (2008) Cochrane handbook for systematic reviews of interventions, Wiley Online Library.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557-560.
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177-188.
- Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies. J natl cancer inst 22: 719-748.
- Stanley TD, Jarrell SB (1989) Meta-Regression analysis: A quantitative method of literature surveys. Journal of Economic Surveys 3: 161-170.
- Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
- Calvet X, Ducons J, Guardiola J, Tito L, Andreu V, et al. (2002) One-week triple vs. quadruple therapy for Helicobacter pylori infection - a randomized trial. Aliment Pharmacol Ther 16: 1261-1267.

Page 8 of 8

- Calvet X, García N, Campo R, Brullet E, Comet R, et al. (1998) Two-day quadruple therapy for cure of Helicobacter pylori infection: a comparative, randomized trial. Am J Gastroenterol 93: 932-934.
- 27. Kim MS, Kim N, Kim SE, Jo HJ, Shin CM, et al. (2013) Long-term follow up Helicobacter Pylori reinfection rate after second-line treatment: bismuthcontaining quadruple therapy versus moxifloxacin-based triple therapy. BMC Gastroenterol 13: 138.
- Lara LF, Cisneros G, Gurney M, Van Ness M, Jarjoura D, et al. (2003) One-day quadruple therapy compared with 7-day triple therapy for Helicobacter pylori infection. Arch Intern Med 163: 2079-2084.
- Raoufi Jahromi R (2014) Furazolidone-based quadruple therapy for eradication of Helicobacter pylori infection in peptic ulcer disease. Archives of Clinical Infectious Diseases 9.
- Xie Y, Zhu Y, Zhou H, Lu ZF, Yang Z, et al. (2014) Furazolidone-based triple and quadruple eradication therapy for Helicobacter pylori infection. World J Gastroenterol 20: 11415-11421.
- Liao J, Zheng Q, Liang X, Zhang W, Sun Q, et al. (2013) Effect of fluoroquinolone resistance on 14-day levofloxacin triple and triple plus bismuth quadruple therapy. Helicobacter 18: 373-377.
- 32. Kuo CH, Hu HM, Kuo FC, Hsu PI, Chen A, et al. (2009) Efficacy of levofloxacinbased rescue therapy for Helicobacter pylori infection after standard triple therapy: a randomized controlled trial. Journal of Antimicrobial Chemotherapy 63: 1017-1024.
- Uygun A, Kadayifci A, Safali M, Ilgan S, Bagci S (2007) The efficacy of bismuth containing quadruple therapy as a first-line treatment option for Helicobacter pylori. J Dig Dis 8: 211-215.
- 34. Lee BH, Kim N, Hwang TJ, Lee SH, Park YS, et al. (2010) Bismuth-Containing Quadruple Therapy as Second-Line Treatment for Helicobacter pylori Infection: Effect of Treatment Duration and Antibiotic Resistance on the Eradication Rate in Korea. Helicobacter 15: 38-45.
- 35. Sun Q, Liang X, Zheng Q, Liu W, Xiao S, et al. (2010) High efficacy of 14day triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication. Helicobacter 15 : 233-238.

- Ciccaglione AF, Cellini L, Grossi L, Marzio L (2012) Quadruple therapy with moxifloxacin and bismuth for first-line treatment of Helicobacter pylori. World J Gastroenterol 18: 4386-4390.
- 37. Liang X, Xu X, Zheng Q, Zhang W, Sun Q, et al. (2013) Efficacy of bismuthcontaining quadruple therapies for clarithromycin-, metronidazole-, and fluoroquinolone-resistant Helicobacter pylori infections in a prospective study. Clinical Gastroenterology and Hepatology 11: 802-807.
- 38. 38. Koksal AS, Onder FO, Torun S, Parlak E, Sayilir A, et al. (2013) Twice a day quadruple therapy for the first-line treatment of Helicobacter pylori in an area with a high prevalence of background antibiotic resistance. Acta Gastroenterol Belg 76: 34-37.
- Dore MP, Farina V, Cuccu M, Mameli L, Massarelli G, et al. (2011) Twice-aday bismuth-containing quadruple therapy for Helicobacter pylori eradication: a randomized trial of 10 and 14 days. Helicobacter 16: 295-300.
- 40. Ching SS, S Sabanathan, Jenkinson LR (2008) Treatment of Helicobacter pylori in surgical practice: a randomised trial of triple versus quadruple therapy in a rural district general hospital. World J Gastroenterol 14: 3855-3860.
- Venerito M, Krieger T, Ecker T, Leandro G, Malfertheiner P (2013) Metaanalysis of bismuth quadruple therapy versus clarithromycin triple therapy for empiric primary treatment of Helicobacter pylori infection. Digestion 88: 33-45.
- 42. Liang X, Xu X, Zheng Q, Zhang W, Sun Q, et al. (2013) Efficacy of bismuthcontaining quadruple therapies for clarithromycin-, metronidazole-, and fluoroquinolone-resistant Helicobacter pylori infections in a prospective study. Clin Gastroenterol Hepatol 11:802-807.
- Ford AC, Malfertheiner P, Giguere M, Santana J, Khan M, et al. (2008) Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis. World J Gastroenterol 14: 7361-7370.
- 44. Lee SK, Lee SW, Park JY, Kwon BS, Kim SY, et al. (2011) Effectiveness and safety of repeated quadruple therapy in Helicobacter pylori infection after failure of second-line quadruple therapy: repeated quadruple therapy as a thirdline therapy. Helicobacter 16: 410-414.