
Volume 7 • Issue 1 • 10000e59
J Bioequiv Availab
ISSN: 0975-0851 JBB, an open access journal

Research Article Open Access

Ayrapetyan, J Bioequiv Availab 2015, 7:1 
DOI: 10.4172/jbb.10000e59

Editorial Open Access

At present, cancer is one of the major causes of death worldwide. 
However, the detailed mechanism of carcinogenesis is not clear yet. 

More than 80 years ago Nobel Prize laureate Warburg pointed out 
that in cancerous cell the loss of oxidative capacity of mitochondria and 
the glycolytic metabolism shift relative to oxidative phosphorylation as 
O2 could not reach to mitochondria [1]. However, the nature of the 
primary mechanism leading to generation of Warburg phenomenon 
has not been elucidated yet. 

In 1971 the second revolutionary discovery was made in cancer 
research by Raymond Damadian, who elucidated that cancerous cell is 
markedly overhydrated and can be much as 90% water while in norm 
it can be 70-73%. “Magnetic Resonance” method [2] of detection of 
cell over hydration suggested by him which serves as an early tumor 
detection diagnostic method at present has a worldwide clinical usage. 
It is established that cell swelling triggers its proliferation, while cell 
shrinkage promotes its apoptosis [3-6]. Cell hydration causes not 
only the promotion of cell division and oncogene expression but also 
inactivates genes inducing cell apoptosis [7]. On the basis of these 
data cell over hydration was suggested as a primary messenger in 
carcinogenesis [3,7]. However, the nature of metabolic mechanism the 
dysfunction of which causes over hydration in cancer cells as well as 
the link between cell over hydration and Warburg phenomenon are 
also not elucidated yet. Therefore, it is suggested that the discovery of 
intracellular signaling pathway through which the correlation between 
cell hydration and mitochondrial function is realized could be one of 
the key problems of modern cancer research.

The cell membrane is highly permeable for water because of the 
existence of special water channels (aqua pores) [8] which makes cell 
hydration a dynamic and fundamental cell parameter determining 
its functional activity. Regulatory role of cell hydration is realized a) 
by changing the hydration of intracellular macromolecules (folding-
unfolding mechanisms) [9] and b) by changing the number of surface-
dependent functionally active protein molecules in membrane having 
receptors [10], enzymatic [11] and channel forming [12] properties.  

It is known that Na+/K+ pump has a crucial role in regulation of cell 
hydration [3-5,13] and its dysfunction is a common consequence of any 
pathology including cancer [14]. Na+/K+ATP-ase (working molecules 
of Na+/K+ pump) has 4 catalytic subunits having different functional 
activities and sensitivities to cardiac glycoside: α1 (low), α2 (middle ), 
α3 and α4 (high) [15], the latter is identified only in testis [14]. From 
these isoforms α1 (fully) and α2 (partly) have ion transporting function 
[15,16], while α3 isoform mainly performs intracellular signaling 
function [17-19]. However, the individual role of these isoforms in cell 
volume regulation is not identified. 

In healthy animals only the excitable cells (neurons and muscle) 
have all three isoforms, while in non-excitable cells only α1 is expressed. 
Several studies have revealed a highly expressed α3 isoform in cancer 
cells, which allows to suggest it to be one of the early hallmarks for 
carcinogenesis [20-22]. However, by our recent data it has been shown 
that the 3 isoforms are present both in tumor tissues and in non-
excitable tissues of sarcoma tumor carrying mice, and these tissues are 

more hydrated compared to healthy mice tissues [23]. It was also shown 
that the number of these three isoforms in cell membrane increases 
by cell swelling and decreases by cell shrinkage [11]. Nevertheless, 
surface–dependent changes were more pronounced for α3 receptors 
than for low affinity ones. Cell swelling and the increase of the number 
of α3 receptors take place in response of stimulation of factor-induced 
increase of membrane permeability [11,24,25]. As α3 receptors serve 
as an extra-sensitive and universal sensor for different chemical and 
physical factors [26,27] it is predicted that its abnormal activation 
could bring to over hydration which in its turn will lead to higher 
activation of mitochondrial function producing more CO2 and H2O 
in intracellular medium. As CO2 solubility in aqua medium is more 
than 20 times higher than O2 solubility [28], oxygen could not reach to 
mitochondria and would lead to generation of Warburg phenomenon. 
Therefore, prevention of generation of Warburg phenomenon can be 
achieved by both cell dehydration and the decrease of CO2 solubility 
in cytoplasm. Previous our study has shown that static magnetic field 
which has dehydration effect on cells, including cancer [24,25] has also 
depressing effect on CO2 solubility [29,30]. Therefore, magnetotheraphy 
could serve as one of the powerful tools for cancer prevention

 The next pathway for cancer prevention could be the activation of 
bicarbonate transport (HCO3) from the cells. There are different modes 
of bicarbonate transport: Na+/HCO3, Na driven CI/HCO3 and K

+/HCO3 
[31]. It is suggested that the first two modes leading to the increase of 
intracellular Na+ and intracellular CI respectively, have activation effect 
on mitochondrial function, while K+/HCO3 doesn’t have such effect. 
Therefore, K+/HCO3 transporter protein could be considered as an 
effective therapeutic target for cancer prevention and the detailed study 
of the role of this protein in restoring the intracellular pH could serve 
as one of the modern problems in cancer prevention research.
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