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Heart muscle failure, the risk of which is increased by aging, remains 
as a major cause of mortality and morbidity. The cardio-myocyte is 
made up of approximately 50% of myofibrils, and the remainder consists 
of mitochondria, nucleus, sarcoplasmic reticulum (SR) and the cytosol 
[1]. Therefore, the cytoskeleton and myofibril contractility have their 
essential roles in metabolic regulation of myocyte volume, which could 
be considered as a marker for myocyte contraction. As Ca2+ has a key 
role in the process of muscle contractility, at present all precautionary 
and therapeutic methods, aimed at decreasing age-dependent heart 
muscle failure, are based on the concept that the elevation of SR stress-
induced intracellular Ca2+ ([Ca2+]i) leads to the generation of a number 
of pathological changes of heart muscle [2,3]. However, the primary 
mechanism dysfunction of which brings to the increase of [Ca2+]i is not 
clear yet. Though myocyte dehydration is one of the essential hallmarks 
for aging, our knowledge on its role in heart muscle failure, particularly 
in increase of [Ca2+]i is rather limited. As water is a dominant component 
of cells and serves as a common medium for metabolic reactions, its 
physicochemical properties has determining role in regulation of cell 
metabolism. The regulatory role of intracellular water on cell metabolism 
is realized by controlling intracellular macromolecules, including DNA 
activities through the “folding –unfolding” mechanisms [4], by surface-
dependent changes of a number of functionally active proteins, having 
enzymes [5], receptors [6] and ionic channel properties [7]. The facts 
that water structure is extra sensitive to physical and chemical factors 
[8] and cell membrane is highly permeable for water [9], make the
water molecules as primary messengers between cell bathing medium
and intracellular metabolism [10]. As intracellular osmotic pressure
exceeds the extracellular one, water influx is osmotically driven into
cell, which is balanced by metabolism-dependent water efflux. It has
been shown that depending on their directions water fluxes through
the membrane have activation or inactivation effect on ionic currents:
water influx has activation effect on Na+ (INa) and Ca2+ (ICa) currents and 
inactivation effect on K+ (Ik) current, while water efflux has the opposite 
effect on these currents [7,11-14]. From these data it is predicted that
metabolism-dependent water efflux has a great physiological meaning
as it inhibits the electrochemical driving of Na+ and Ca2+ influxes into
myocyte.

There are minimum three enzyme systems that are actively 
involved in metabolic controlling of cell hydration and heart muscle 
contractility: transporting ATP-ases, having anti-gradient ions 
transporting functions through the membrane; kinases, regulating 
contractility of myofibrils; and enzyme systems involved in intracellular 
oxidation processes, producing water molecules in cytoplasm. It is 
known that among the aforementioned enzyme systems controlling 
cell hydration, Na+/K+-ATPase has a central role, which is due to the 
following properties of Na+/K+-ATPase: a) being working molecules for 
Na+/K+-pump, Na+/K+-ATPase generates Na+ gradient on membrane, 
serves as an energy source for a number of secondary ionic transporters 
in membrane, including Na+/Ca2+ and Na+/H+ exchange [15]; b) being 
the highest ATP energy utilizing mechanism, it determines the rate of 
oxidative phosphorylation processes resulting the ATP synthesis and 
the release of H2O in cytoplasm; [16] c) having electrogenic character, 
it pumps water from the cells [17-19] and d) besides the transporting 

function, Na+/K+-ATPase has also multisided intracellular signaling 
functions, including controlling of [Ca2+]i and phosphorylation 
and dephosphorylation processes [20,21]. It is known that Na+/K+-
pump functions with higher rate in pacemaker cells because of high 
permeability for Na+ [22]. Therefore, all above mentioned mechanisms 
are active and Na+/K+-pump serves as a central membrane mechanism 
through which the metabolic controlling of pacemaker activity of cells, 
including pacemaker of heart muscle is realized [23-25]. Previously it 
has been shown that Na+/K+-pump regulates membrane excitability not 
only by membrane hyperpolarization but also by potential-independent 
mechanisms such as water efflux-induced inactivation of INa+ and 
ICa and surface-dependent decrease of a number of ionic channels in 
membrane [7,11].

It is known that the dysfunction of Na+/K+-pump, is a common 
consequence of any pathology, including age-induced heart muscle 
failure. However, the dysfunction of which properties of Na+/K+-pump 
is a primary mechanism for generation of age-induced cardio-muscle 
dehydration and failure of muscle contractility is not clear yet.

At present it is well established that Na+/K+-ATPase in membrane of 
cardio-myocyte has three catalytic isoforms, having different affinities 
to cardio glycosades: low(α1), middle (α2) and high (α3) [26]. Among 
them α3 isoform has only signaling function [20,21]. Earlier we have 
shown that ≤ 10-9M ouabain (agonist for α3 receptors) stimulates Na+/
Ca2+ exchange in reverse mode (R Na+/Ca2+) by increasing intracellular 
contents of cAMP, which leads to membrane hyperpolarization and 
inhibition of pacemaker activity [27]. Based on the literature data, that 
cAMP-activated Ca2+-ATPase in SR membrane pushes Ca ions from 
cytoplasm into SR [28], the aforementioned data on nM ouabain-
induced activation of R Na+/Ca2+exchange can be explained by the 
decrease of [Ca2+]i. 

Our recent study has shown that in spite of the affinities of α1 
and α2 isoforms to ouabain, the affinity of α3 isoform to ouabain has 
pronounced age-dependent depressing character, which is due to the 
dysfunction of R Na+/Ca2+exchange [29]. 

The most essential discovery was that in spite of the fact that R 
Na+/Ca2+ exchange functions in stoichiometry of 3Na:1Ca [26,30] its 
activation by ≤10-9M ouabain leads to muscle hydration which has 
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strong metabolism-dependent and age-induced weakening character 
[29,31,32]. 

Thus, based on the above mentioned data it is suggested that the 
dysfunction of the pathway through which cAMP-dependent R Na+/
Ca2+ exchange stimulates the release of intracellular water molecules 
(water efflux from the myocyte) can be considered as a primary 
mechanism for age-dependent increase of membrane permeability for 
Na+ and Ca2+ leading to heart muscle failure. Therefore, the elucidation 
of the mechanism(s) through which cAMP-dependent R Na+/Ca2+ 
exchange stimulate(s) the rate of glycolysis (H2O-release) could serve 
as a novel therapeutic target for age-dependent heart muscle failure. 
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