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Abstract
Genome editing using designer site-specific nucleases is a burgeoning field in which genomes of target cells/

organisms are now being manipulated to create/correct mutations or transcriptionally manipulate gene expression. 
The field began over a decade ago with zinc finger nucleases, which were soon followed by designer homing 
endonucleases/mega nucleases, transcription activator-like effector nucleases, and more recently, CRISPR/Cas9. 
Each platform has its own strengths and weaknesses but they all allow editing of the genome in cells and organisms 
to either study biology/function of genes or for a therapeutic effect. This review will briefly describe the various gene 
editing platforms and then focus in on the CRISPR/Cas9 system.
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Introduction
Over the past two decades, significant improvements have been made 

in virus-based gene transfer approaches for the treatment of disease by 
restoration of a missing gene to cells or tissues or to knockdown genes 
for therapeutic effect or study disease biology by RNA interference 
(RNAi). Despite their initial successes in the treatment of monogenic 
recessive disorders [1,2] and the enhanced safety mechanisms built into 
the virus-based gene replacement therapy approaches, these still have 
some limitations. First, the transgene and its regulatory elements need 
to be inserted into the vector, and often cargo carried is too large for 
the payload of the viral vectors. Second, the random integration of the 
transgene cassette has a potential, albeit small, of unintentional vector-
mediated insertional proto-oncogene activation or dysregulation of 
an endogenous gene [3-5]. For RNAi approaches, while these are 
extensively used to study biological processes and gene function, 
there are concerns regarding the specificity and safety of permanently 
inserting shRNA or shRNA embedded into microRNA in the genome 
for clinical translation [6]. Regardless, gene replacement therapy has 
been successfully translated to the clinic and is curing a majority of 
patients. However, the inserted genes are not under control of the 
endogenous gene regulation machinery, which would provide optimal 
level and regulation of expression. Genome editing with programmable 
nucleases such as mega nucleases [7], zinc finger nucleases (ZFNs) 
[8], transcription activator-like effector nucleases (TALENs) [9], and 
clustered regulatory interspaced short palindromic repeat (CRISPR) 
and CRIPSR-associated protein (CRISPR-Cas) [10] enables precise 
and efficient genome targeting, which can be used for gene disruption 
or homologous recombination, without the need for introducing 
permanent exogenous genetic material into the host genome. This 
article briefly describes the current state of the nuclease-based genome 
editing approaches, with a special focus on CRISPR-Cas technology.

Gene Editing by Reprogrammable Nucleases 
Precise genome editing with reprogrammable nucleases such 

as mega nucleases, ZFNs, TALENs, and CRISPR-Cas involves the 
introduction of site-specific DNA double-strand break (DSBs) into the 
genome by these nucleases. Generally, DNA DSBs are repaired via either 
non-homologous end joining (NHEJ) or homologous recombination 
(HR), with NHEJ as the default repair pathway that occurs following 
a DSB by these nucleases, in absence of a donor DNA template [3]. In 
the presence of a DNA template, which has homology on the 5’ and 
3’ ends around the region of the DSB, homology directed repair can 
occur. Furthermore, micro homology-mediated end joining (MMEJ) 

is an alternate end joining repair pathway that also repairs DSBs 
through the use of micro homologous sequences, resulting in deletions 
of genetic material [11]. NHEJ, the predominant DSBs repair pathway 
in mammalian cells, mediates DSB repair by direct rejoining of the 
two DSB ends in an error-prone manner, leading to the introduction 
of small insertions/deletions (indels). Indels can disrupt the reading 
frame of the coding region of a gene, leading to the production of 
truncated proteins or mRNA degradation by nonsense-mediated decay 
[3,12]. Hence, NHEJ can be used to create gene knockouts. Unlike 
NHEJ, error-free HR-mediated DSB repair requires the presence of a 
homologous DNA template. By providing single- or double-stranded 
exogenous DNA templates, precise, targeted changes to the genome can 
be done [3]. 

Several factors including cell type and cell-cycle status, the size 
of the deletion/insertion, and the length of the homology arm of the 
donor DNA can affect the efficiency of genome editing by HR [3]. For 
example, unlike NHEJ mediated repair, which can occur regardless 
of the cycling status of the cell, HR is mainly active during the S/G2 
phase, limiting precise genome modifications to only mitotic cells 
[3,13,14]. Moreover, it has been reported that single-stranded DNA 
provides superior HR rates compared to double-stranded DNA [15]. 
Furthermore, longer homology arms have been shown to be associated 
with a higher HR rate, while an inverse relationship has been shown 
between HR rates and the length of the HR-mediated insertions [16].

Gene Editing Approaches 
Mega nucleases

Homing endonucleases are a large family of DNA endonucleases 
derived from phages, bacteria, archaebacteria and eukaryotes. Despite 
their small size (<40 K Da), homing endonucleases have extended (12-
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45 bp) DNA recognition sites [17]. Homing endonucleases are usually 
embedded within self-splicing elements (Group I intron, Group II 
intron, or intein), which avoids disruption of the target gene, while 
the activity of the endonuclease results in a highly efficient site-specific 
recombination event [7,18]. At least 5 families of homing endonucleases 
have been characterized, which vary highly in their conserved nuclease 
core motif, mechanism of catalysis, and host organism [7,19]. Of the 
5 families, the enzymes from the LAGLIDADG homing endonuclease 
family, which are usually termed as mega nucleases, are the most widely 
used homing endonucleases for gene editing [7].

Mega nuclease-induced DSBs are repaired via HR [17], enabling 
precise genome editing. Mega nuclease-mediated gene editing, 
however, has its limitations. One of the major drawbacks of mega 
nucleases is the need for introduction of a known long cleavage site 
into the region of interest. In addition, because the DNA recognition 
and cleavage domains of mega nucleases are structurally associated, 
engineering mega nucleases, without disrupting their overall stability, 
has been challenging [17]. However, one major advantage in the use of 
mega nucleases is that, due to their small size, their delivery both in vivo 
and ex vivo is relatively easy.

Zinc finger nucleases (ZFNs)

ZFNs are chimeric synthetic endonucleases, with a 9-18 bp 
recognition site per ZFN, consisting of a zinc finger DNA-binding 
domain fused to the FokI DNA cleavage domain. Like mega nucleases, 
ZFNs can be manipulated to target a specific DNA sequence [3]. 
However, designing custom ZFNs that have high specificity to target 
sequences requires substantial protein engineering, which has been 
rate limiting, preventing their widespread use [20]. It was reported that 
ZFNs can have substantial off-target effects at undesired sites; however, 
heterodimerization has helped reduce these off-target effects [21]. 
The advantage of ZFNs, like meganucleases, is their small size, which 
facilitates their delivery both in vivo and ex vivo [3]. 

Several preclinical studies have reported successful application 
of ZFNs to genome editing in murine models of hemophilia B, when 
injected in vivo [22], and in severe combined immune deficiency (SCID) 
[23], and in HIV-infected mice with editing performed ex vivo [24,25]. 
For example, it has previously been shown that ZFN can efficiently 
mediate HR targeted gene insertion in mouse liver, and that the level of 
correction was sufficient to correct hemophilia B phenotype in mouse 
model of hemophilia B [22]. ZFN has also been successfully applied 
to genome editing in patient-derived induced pluripotent stem cells 
(iPSCs) [26-29]. More recently, ZFN that help disrupt CCR5 surface 
expression on T cells have completed early phase safety and efficacy 
testing in HIV infected humans [30].

Transcription activator-like effector nucleases (TALENs)

TALENs are chimeric restriction endonucleases, with a 14-20 
bp recognition site per TALEN. TALENs are comprised of a DNA 
recognition domain and a DNA cleavage domain fused together. 
Similar to mega nucleases and ZFNs, TALENs can be engineered to 
target a specific DNA sequence. While designing TALENs is relatively 
simple, TALEN-coding sequences are quite long, and their generation 
involves rather complicated molecular cloning [3]. A disadvantage 
of the TALEN system is the large size of the TALENs which can 
impede in vivo delivery. TALEN-mediated NHEJ has been previously 
reported to restore the mutated dystrophin reading frame in cells from 
patients with duchenne muscular dystrophy (DMD) [31]. In addition, 
TALEN-mediated NHEJ has been used to inhibit viral replication in 
a mouse model of hepatitis B virus (HBV) replication established by 

hydrodynamic injection [32]. Furthermore, TALEN has been used for 
genome editing in patient-derived iPSCs including those from patients 
with X-linked chronic granulomatous [33], β-thalassemia [34] and 
sickle cell disease [35].

CRISPR-Cas 

The CRISPR-Cas system exploits the mechanism used by bacteria 
to recognize and cleave re-infecting phage DNA. Unlike the mega 
nucleases, ZFNs and TALENs, in which a site-specific DNA-binding 
domain directs the nuclease to the desired target site, in CRISPR-
Cas systems, specific DNA binding is achieved by a short RNA guide 
molecule [3]. The major advantage of the CRISPR-Cas system is that, 
unlike the above-mentioned systems, CRISPR-Cas can be readily 
engineered to target a new DNA sequence by changing a 20-nucletide 
sequence within the guide RNA molecule which re-directs the Cas 
nuclease to a desired target site through Watson-Crick base paring 
[3,36]. 

Based on the components of Cas proteins, CRISPR-Cas systems 
can be broadly divided into two classes. Class I (types I, III and IV) 
CRISPR-Cas systems employ various Cas nucleases while Class II 
(types II and V) CRISPR-Cas systems use a large single-component Cas 
nuclease [37,38]. A CRISPR-Cas system is composed of the CRISPR 
RNA (crRNA) array consisting of Cas gene, non-coding RNAs and 
direct repeats interspaced by protospacers. Protospacers are flanked 
by sequences known as protospacer adjacent motifs (PAMs) within the 
DNA target. Among the CRISPR-Cas systems, the type II system is the 
best characterized and has been adopted for precise genome editing 
[36] A brief review of the CRISPR-Cas systems utilized for genome 
editing is presented below.

CRISPR-Cas9

The type II CRISPR system from Streptococcus pyogenes, 
consisting of the Cas9 nuclease, a crRNA array, and an auxiliary trans-
activation crRNA (tracrRNA), has been adopted for gene editing. 
Herein, crRNA, which consists of a 20-nucleotide guide sequence and a 
short direct repeat, directs the Cas9 nuclease to a target DNA sequence 
followed by a G-rich PAM (5'-NGG) (Figure 1A). The Cas9 protein 
contains predicted RuvC-like and HNH endonuclease domains. HNH 
cleaves the DNA strand complementary to the guide RNA while RuvC 
mediates cleavage of the noncomplementary strand. Of note, to simplify 
the CRIPSR/Cas system for gene editing, a chimeric single-guide RNA 
(sgRNA) has been generated by fusing crRNA and tracrRNA [36].

Despite its great promise, a number of limitations exist with the 
CRISPR-Cas9 system. One of the major limitations of the CRISPR-
Cas9 system is the large 4.5 kb size of the Cas9 nuclease derived 
from streptococcus pyogenes (spCas9) which limits its application in 
therapeutic genome editing; for example, the size precludes its delivery 
via adeno-associated virus (AAV), one of the most promising viral 
vectors for gene therapy. To overcome this limitation, a smaller Cas9 
from staphylococcus aureus (saCas9) has been recently described with 
cleavage efficiency comparable to that of spCas9 despite being slightly 
shorter (3.2 kb) [37]. Interestingly, saCas9 has shown higher specificity 
compared to spCas9, presumably due to the long 5′-NNGRRT PAM of 
saCas9 (Figure 1B). More recently, to overcome the size limitation of 
spCas9, a ‘split spCas9’ has been generated, where the coding sequences 
of the recognition (REC) lobe and the nuclease (NUC) lobe of spCas9 
were distributed across two separate vectors. The separate lobes were 
later dimerized into a fully functional spCas9 enzyme using split inteins 
[39] or by the use of FKBP dimerization domain and spCas9 dimerized 
using a chemical inducer of dimerization [40]. 
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Another important limitation of CRISPR-Cas9 system is on-target 
and off-target mutations caused by spCas9. It has been reported that 
spCas9 can be converted to DNA nickases by mutating certain aspartate 
(D10A) and histidine (H840A) residues of the RuvC and HNH catalytic 
domains, respectively. It has been shown that a Cas9-nickase (Cas9n) 
combined with paired sgRNAs resulted in a significant decrease (50 
to 1500 fold) in off-target activity in cell lines [41]. More recently, 
Zhang and colleagues have published a modified spCas9, enhanced 
specificity spCas9, showing substantially decreased off-target cleavage, 
while retaining robust on-target cleavage activity [42]. This was soon 
followed by a modified spCas9 published by the Joung laboratory, 
where a different set of mutations resulted in substantially reduced off 
target cleavage while retaining robust on target nuclease activity [43].

The CRISPR-Cas9 system has been broadly used for gene editing 
in in vitro and animal models of human diseases. CRISPR-Cas9 has 
been demonstrated in several studies to efficiently correct dystrophin 
mutations in DMD patient iPSCs [42], DMD patients myoblasts [44], 
and in mouse models of muscular dystrophy [45,46]. In addition, 

CRISPR-Cas9-mediated HR has been successfully used to restore the 
cystic fibrosis trans membrane conductor receptor (CFTR) function 
in intestinal stem cells derived from cystic fibrosis patients [47] and 
correct β-thalassemia mutations in iPSCs derived from β-thalassemia 
patients [48]. In addition, CRIPSR-Cas9-mediated HR has been 
adopted to restore a Crygc mutation in a dominant cataract mouse 
model, resulting in the correction of cataract phenotype [49], and a Fan 
mutation in a mouse model of human hereditary tyrosinemia type I, 
which rescued the lethality in Fah-deficient mice [50]. CRISPR-Cas9 
system has also been successfully harnessed to disrupt DNA viruses 
that cause chronic infection including HSV-1 [51], HIV [52,53] and 
HBV [54-56] in vivo and in vitro. For example, in one study CRISPR-
Cas9, was able to induce the naturally occurring CCR5Δ32 mutation 
in wild-type iPSCs, resulting in resistance of the mutated iPSCs to HIV 
infection in vitro [30]. 

CRISPR-Cpf1

Cpf1 is a class II CRISPR single RNA-guided nuclease. Very 
recently, Cpf1from Francisella novicida U112 (FnCpf1) has been shown 
to effectively cut target DNA through a staggered double-stranded 
break. FnCpf1 is slightly smaller than spCas9 (1300 aa vs. 1620 aa). 
Like spCas9, FnCpf1 contains a predicted Ruv1-like domain but lacks 
a second HNH catalytic domain. Another advantage of FnCpf1 over 
spCas9 is that, unlike spCas9 that requires both crRNA and tracrRNA 
to mediate cleavage of a target DNA, crRNA is sufficient for FnCpf1-
mediated DNA interference. The other difference between FnCpf1 
and spCas9 is that spCas9 cleavage results in blunt ended DSBs, while 
FnCpf1 generates a 5-nucleotide 5' overhang upon DSB, providing a 
tool to precisely edit genome through non-HR mechanisms. In contrast 
to spCas9 which uses a G-rich PAM, FnCpf1 efficiently cleaves target 
sites followed by a T-rich PAM (5'-TTN) (Figure 1C) [57]. The relative 
HR vs error prone repair with the different Cas-9 systems and Cpf1 
remain to be seen in therapeutically relevant cells, in order to allow 
their clinical translation.

Conclusion
The CRISPR-Cas system provides a robust and powerful tool for 

genome editing. However, in order to be used as a therapeutic tool, this 
technology will need a robust methodology to optimize its efficiency, 
specificity, and safety. In addition, novel approaches are needed to 
improve the rate of HR, which is necessary to make precise sequence 
changes and insertions.
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