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Lu and his research team used the retrograde transneuronal 
transport of rabies virus to identify neurons in the cerebellar nuclei 
that project via the thalamus to the cerebral cortex of macaques.  In 
particular, projections from deep cerebellar nuclei to area 46 of the 
prefrontal cortex were compared with projections to the primary motor 
cortex (M1). They found that, after viral injections into area 46, many 
labeled neurons were observed in the ventral aspect of the Posterior 
Interpositus Nucleus (PIN), whereas no neuron labeling was found 
in the Anterior Interpositus Nucleus (AIN). In contrast, a number 
of labeled neurons were found in the dorsal portion of the PIN after 
viral injections into the M1. Additionally, neurons labeled from the 
M1 injections were also observed in the AIN [1-3].  These findings 
demonstrate that the cerebellar interpositus nuclei possess distinct 
outputs to the prefrontal cortex versus the M1, which potentially 
contribute to different aspects of behavioral functions such as different 
stages of the motor learning. 

Medial cerebellar outputs from the interpositus nuclei have been 
thought to be crucial for the associative motor learning. McCormick 
and Thompson have reported that lesions of the interpositus nuclei 
abolished the memorized eyeblink response; recordings from these 
nuclei have revealed neuronal activity to response learning [4]. Yet, 
clinical studies have reported that initial stage of trace eyeblink 
conditioning learning was impaired in patients with lesions in the PIN 
[5].  Imaging studies have also shown that the cerebellum play a key 
role in eyeblink conditioning [6-8].  Moreover, significant changes of 
positron emission tomography and regional cerebral blood flow in 
several areas, including the cerebellum and the prefrontal cortex, were 
observed during performance of associative motor learning task [9]. The 
above, taken together with the new medial cerebellar channels from the 
posterior interpositus nucleus to area 46 of the prefrontal cortex, it is 
reasonable to hypothesize that the cerebellum and cerebello-thalamo-
cortical channels contribute to motor learning. 

The medial cerebellar output from the ventral PIN and the dorsal 
PIN/AIN play differential roles in various steps of the motor learning 
[5,10,11].  The dorsal aspect of the PIN has been thought to contribute 
to performance of memorized motor responses such as eyeblink and 
saccadic eye movements rather than to their initial learning [10, 11].  If 
this is the case, then impairment in the acquisition of the new learning 
by lesions of the PIN could be due to functional blockade of the ventral 
rather than dorsal portion of the PIN [5].  

Furthermore, previous studies have shown evidence that the 

expression of representative motor memory formation genes was 
increased selectively in the AIN, but not in the PIN [12].  This finding 
strongly suggests that the AIN is involved in the storage and/or retrieval 
of long-term memory of motor learning. Moreover, many studies have 
indicated that the AIN is the site for long-term memory rather than 
new learning during practice of the eyeblink conditioning response.  
Examples include lesion [13-17]; inactivation [18,19]; electron 
microscopy [20]; functional magnetic resonance imaging [21].  Given 
the above, it is natural to raise a theory that the medial cerebellar output 
from the ventral PIN and the dorsal PIN/AIN plays a critical role in the 
new learning and long-term memory, respectively, during the motor 
learning processing.

Interestingly, different cortical areas have been thought to be 
involved in these various steps of motor learning.  A considerable theory 
for motor learning indicates that new learning is an explicit process 
originating in the prefrontal cortex, and that the long term memory 
for the learned motor skill becomes automatic and an implicit process 
formed in the motor cortex [22-24]. Thus, the disynaptic pathway from 
the ventral aspect of the PIN to area 46 may be involved in the initiation 
of the association of motor learning.  After repeated practice, cerebellar 
channels to the M1 originating from the dorsal PIN/AIN turn to play 
a key role in the storage and/or retrieval of long-term memory, which 
makes the association automatic.

Last, neuropsychological testing of patients with cerebellar lesions 
has revealed specific deficits in different faculties, including visual 
perception [25-31], short-term memory [32,33], or verbal fluency [34]. 
Moreover, clinical studies have shown that, in the brains of subjects 
with autism, the most consistent abnormalities are found in cerebellar 
Purkinje cells [35].  Accordingly, the questions of whether and how 
these cerebello-thalamo-cortical channels and their involvements in 

*Corresponding author: Xiaofeng Lu, Research Physiologist, VA Medical Center, 
Minneapolis, USA, E-mail: luxxx049@umn.edu 

Received March 26, 2013; Accepted March 28, 2013; Published March 30, 2013

Citation: Lu X (2013) The Cerebellum and Cerebello-Thalamo-Cortical Channels 
Contribute to New Learning and Long-Term Memory of Motor Skill. Brain Disord 
Ther 2: e106. doi:10.4172/2168-975X.1000e106

Copyright: © 2013 Lu X. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Why do we have a cerebellum, a little brain? Although the cerebellum contains as many neurons as there are in 

the cerebral cortex, we are curiously poorly informed about the finer details of its function.  Recent anatomical studies 
have revealed cerebellar projections from the separate portions of the interpositus nuclei into the primary motor cortex 
(M1) and prefrontal cortex. These findings suggest that the cerebellum might not only play a role in motor control but 
also in cognitive domains. In particular, we discuss here that these new neural pathways provide a neural substrate for 
acquisition and retention of motor learning.
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different stages of learning relate to those cerebellar deficits remain to 
be answered. 

Conclusion 
In conclusion, this review discusses fundamental neural mechanisms 

for the involvement of medial cerebellar output from the interpositus 
nuclei in cognitive functions such as acquisition and retention during 
motor learning.  This provides useful information for understanding 
the processing of cerebellar outputs to cognitive function. 
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