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ABC genes, especially ABCB1 (ATP-binding cassette, sub-family B 
(MDR/TAP), member 1; Doxorubicin resistance; Multidrug resistance 
1; Multidrug resistance protein 1; P-glycoprotein 1; P glycoprotein 1/
multiple drug resistance 1;P-gp) (7q21.12), ABCC1 (9q31.1), ABCG2 
(White1) (21q22.3), and other genes of this family encode proteins 
which are essential for drug metabolism and transport. The multidrug 
efflux transporters P-gp, multidrug-resistance associated protein 4 
(MRP4) and breast cancer resistance protein (BCRP), located on 
endothelial cells lining brain vasculature, play important roles in limiting 
movement of substances into and enhancing their efflux from the brain. 
Transporters also cooperate with Phase I/Phase II metabolism enzymes 
by eliminating drug metabolites. Their major features are their capacity 
to recognize drugs belonging to unrelated pharmacological classes, 
and their redundancy, by which a single molecule can act as a substrate 
for different transporters. This ensures an efficient neuroprotection 
against xenobiotic invasions. The pharmacological induction of ABC 
gene expression is a mechanism of drug interaction, which may affect 
substrates of the up-regulated transporter, and over expression of 
MDR transporters confers resistance to anticancer agents and CNS 
drugs [1,2]. Mutations in ABC transporters influence pathogenesis and 
therapeutics of brain disorders [3]. 

ABCB1 is probably the most important drug transporter in the 
brain. The ABCB1 gene maps on 7q21.12 spanning 209.39 kb (29 
Exons) with the structure of a P-glycoprotein and a Y-box sequence 
5’-CTGATTGG-3’ in its cis-regulatory elements. Several transcripts/
variants (ABCB1-001: 4645 bp. ABCB1-002: 3602 bp. ABCB1-003: 
461 bp. ABCB1-004: 582 bp. ABCB1-005: 555 bp. ABCB1-006: 913 bp. 
ABCB1-007: 1864 bp. ABCB1-008: 642 bp. ABCB1-009: 787 bp. ABCB1-
010: 539 bp. ABCB1-201: 345 bp) are highly expressed in adrenal gland, 
blood-brain barrier (BBB), brain, kidney, liver, placenta, small intestine, 
and uterus, and low expression is present in many other tissues. These 
transcripts encode a protein (ABCB1-001: 141.48 kDa; 1280 aa. ABCB1-
002: 5.89 kDa; 51 aa. ABCB1-003: 5.68 kDa; 48 aa. ABCB1-201: 2.52 
kDa; 22 aa) of the ATP binding cassette super-family, subfamily B 
(MDR/TAP) with two ATP binding and two transmembrane (2TM) 
domains (2 × 6 segments), acting as a transport carrier and a lipid 
translocase of broad specificity. This is a large transmembrane protein 
which is an integral part of the BBB and functions as a drug-transport 
pump transporting a variety of drugs from the brain back into the blood. 
Functions of this protein include the following: ABC transporter, traffic 
ATPase, energy-dependent efflux pump responsible for decreased drug 
accumulation in multidrug-resistant cells; potentially implicated in 
cholesterol transport; may maintain neural stem/progenitor cells in an 
undifferentiated state and could be a neural stem/progenitor marker [4]. 

About 1630 ABCB1 variants have been identified [4]. Of interest, 
ABCB1 has approximately 116 polymorphic sites in Caucasians and 127 
in African-Americans with a minor allele frequency greater than 5%. 
Some of the most commonly studied variants are 1236C>T, 2677G>A/T 
and 3435C>T and the most commonly studied haplotype involves 
the 1236, 2677 and 3435 (TTT) SNPs and 3 intronic SNPs (intron 9, 
intron 13, intron 14) named ABCB1*13. There are many other ABCB1 
variants such as -129C>T (5’-UTR), 61A>G (Asn21Asp) and 1199G>A 
(Ser400Asn) that have been studied in vivo and in vitro. To date, there 

is no clear consensus on the impact of any of these variants on drug 
disposition, response or toxicity [4].

Variants of the ABCB1 gene have been associated with a diverse 
number of diseases and with a great variety of drugs, natural products 
and endogenous agents [4]. Over 1270 drugs have been reported to be 
associated with the ABCB1 transporter protein (P-gp), of which 490 
are substrates, 618 are inhibitors, 182 are inducers, and 269 additional 
compounds which belong to different pharmacological categories of 
products with potential ABCB1 interaction [4]. 

ATP-binding cassette (ABC) transporters, which are localized on 
the surface of brain endothelial cells of the BBB and brain parenchyma, 
affect Aβ transport (flux) across the BBB contributing to the pathogenesis 
of Alzheimer’s disease (AD) [5-12]. One of the clearance pathways of 
amyloid-β is transport across the BBB via efflux transporters. Several 
BBB transporters have been implicated in Aβ exchange between brain 
parenchyma and the circulation [5-12]. Deficiency of either of the two 
major efflux pumps, ABCB1 and ABCG2, involved in Aβ trafficking 
across the BBB, results in increased accumulation of peripherally-
injected Aβ1-40 in the brain [13]. Decreased clearance of amyloid-β 
from the brain may lead to elevated amyloid-β levels. There is an 
age-related decrease in P-gp expression, Aβ1-42 itself downregulates 
the expression of P-gp and other Aβ transporters, which could 
exacerbate the intracerebral accumulation of Aβ and thereby accelerate 
neurodegeneration in AD and cerebral β-amyloid angiopathy [11]. 
Amyloid efflux transporter expression at the BBB declines with aging in 
normal conditions [14], and expression of P-gp protein is significantly 
lower in hippocampal vessels of patients with AD compared to normal 
individuals [12].

ATP binding cassette subfamily G member 2 (ABCG2) is involved 
in amyloid-β transport and was found to be up-regulated in AD brains. 
A functional polymorphism of the ABCG2 gene (C421A; rs2231142) 
(ABCG2 C/C genotype) was associated with AD in the Hungarian 
population. The ABCG2 C/C genotype and the APOE E4 allele may also 
exert an interactive effect on AD risk [15]. Genome-wide significance 
in fully adjusted models was observed for a single-nucleotide 
polymorphism (SNP) in ABCA7 (rs115550680, allele = G; frequency, 
0.09 cases and 0.06 controls), which is in linkage disequilibrium with 
SNPs associated with AD in Europeans. The effect size for the SNP in 
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ABCA7 was comparable with that of the APOE ε4-determining SNP 
rs429358 (allele = C; frequency, 0.30 cases and 0.18 controls) [5].

Single-nucleotide polymorphisms in the ABCB1 gene have been 
associated with altered P-glycoprotein expression and function. Van 
Assema et al. [10] assessed the effects of C1236T, G2677T/A and 
C3435T single-nucleotide polymorphisms in ABCB1 on BBB P-gp 
function in healthy subjects and patients with AD. In healthy controls, 
binding potential did not differ between subjects without and with 
one or more T present in C1236T, G2677T and C3435T. In contrast, 
patients with AD with one or more T in C1236T, G2677T and C3435T 
had significantly higher binding potential values than patients without 
a T. There was a relationship between binding potential and T dose in 
C1236T and G2677T. In AD patients, C1236T, G2677T/A and C3435T 
SNPs may be related to changes in P-gp function at the BBB, and genetic 
variations in ABCB1 might contribute to the progression of amyloid-β 
deposition in the brain. Kohen et al. [16] investigated a possible 
association between 2 common ABCB1 polymorphisms, G2677T/A 
(Ala893Ser/Thr) and C3435T, AD, and CSF levels of Aβ, and no strong 
evidence for association was found. Frankfort et al. [17] studied ABCB1 
SNPs (C1236T in exon 12, G2677T/A in exon 21 and C3435T in exon 
26) and inferred haplotypes in patients with dementia and age-matched 
non-demented control patients and found no differences between both 
groups; however, in a transcriptome analysis of leukocytes from patients 
with mild cognitive impairment (MCI), AD, as well as normal controls 
only the ABCB1 gene exhibited significantly positive correlation with 
Mini-mental state examination (MMSE) scores, representing a novel 
biomarker of AD [18]. 

The drug transporter ABCB1 directly transports Aβ from the brain 
into the blood circulation, whereas the cholesterol transporter ABCA1 
neutralizes Aβ aggregation capacity in an Apolipoprotein E (ApoE)-
dependent manner, facilitating Aβ subsequent elimination from the 
brain [19]. Cascorbi et al. [20] genotyped selected variants in ABCA1, 
ABCA7, ABCB1, ABCC2 and ABCG2 in DNAs from brain tissue of 
71 AD cases with Consortium to Establish a Registry for Alzheimer’s 
Disease (CERAD) neuropathological stages B/C and 81 controls. The 
novel ABCA7 SNP, rs3752246, tended to be associated with AD. ABCB1 
variants were significantly less frequent in AD cases older than 65 
years of age and among females. This association of ABCB1 2677G>T 
(rs2032582) was more pronounced in APOE4-negative cases. Only 
ABCC2 3972C>T (rs3740066) was significantly associated with AD 
risk. 

Efflux transporter P-gp at the BBB restricts substrate compounds 
from entering the brain and may thus contribute to pharmacoresistance 
in CNS disorders, cancer and brain infections. Positron emission 
tomography (PET) has become a promising method to study the role 
of P-gp at the BBB. The first PET study of P-gp function was conducted 
in 1998, and during the past 15 years two main categories of P-gp PET 
tracers have been investigated: tracers that are substrates of P-gp efflux 
and tracers that are inhibitors of P-gp function [21]. 

P-gp protects the brain from accumulation of lipophilic compounds 
by active efflux transport across the BBB. Molecular transporters that 
are expressed in brain, especially at the BBB, are therapeutic targets in 
the treatment of AD. A benzopyrane derivative with P-gp stimulating 
properties has been proposed as a candidate agent to decrease Aβ 
accumulation in AD [22]. Lipid transporters of the A-branch of 
ABC transporters are also potentially involved in AD pathogenesis. 
Induction of transporters via the activation of specific nuclear receptors 
may represent a novel approach to restoring diminished BBB function. 

Transporters in the brain capillary endothelium regulate the permeation 
of therapeutic compounds into the brain [23,24].

Vitamin D receptor (VDR) activation up-regulates Mdr1/MDR1 
and P-gp protein in brain capillaries and microvascular endothelia, 
implicating a role for VDR in increasing the brain clearance of P-gp 
substrates, including hAβ42 in AD [25].

Since P-gp prevents the entry of compounds into the brain by 
an active efflux mechanism at the BBB, inhibition of P-gp may help 
to enhance drug penetration. New reversible inhibitors of P-gp 
have been developed. Some galantamine-like compounds inhibit 
the efflux of the fluorescent P-gp substrate rhodamine 123 in cancer 
cells that over-express P-gp, and also inhibit the efflux of therapeutic 
substrates of P-gp, such as doxorubicin, daunomycin and verapamil. 
These compounds modulate P-gp mediated efflux by competing for 
the substrate binding sites [26]. Activation of the Liver X receptors 
(LXRs) by natural or synthetic agonists decreases the amyloid burden 
and enhances cognitive function in transgenic murine models of AD. 
LXR activation may affect the transport of Aβ peptides across the 
BBB. LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol 
and T0901317) modulate the expression of target genes involved in 
cholesterol homeostasis (ABCA1) and promote cellular cholesterol 
efflux to apolipoprotein A-I and high density lipoproteins. LXR 
stimulation increases the expression of the ABCB1 transporter, which 
restricts Aβ peptide influx [27].

It is also important that drugs for AD treatment optimize CNS 
penetration by minimizing hydrogen bond donors and reducing P-gp-
mediated efflux [28-30]. The increase of P-gp expression and activity 
by a P-gp inducer could be an effective pharmacological strategy in 
slowing or halting the progression of AD [31].
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