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Abstract
This study aimed at the taxonomic characterization of a collection with 98 bacteria isolated from oil and 

formation water samples from petroleum reservoirs of the Campos Basin (Brazil), as well as the evaluation of their 
degradation potential of petroleum biomarkers. The genomic DNA extracted from all isolates was employed in PCR 
reactions for amplification of the 16S rRNA gene and subsequent screening by ARDRA (Amplified Ribosomal DNA 
Restriction Analysis), in order to detect potentially distinct taxonomic groups. Further 16S rRNA gene sequencing 
and phylogenetic analysis of 39 isolates representing different ribotypes revealed that these isolates belonged to 
10 different genera, encompassing Marinobacter, Halomonas, Citreicella, Stenotrophomonas, Achromobacter, 
Bacillus, Staphylococcus, Micrococcus, Kocuria and Streptomyces, affiliated to the three phyla Proteobacteria, 
Firmicutes and Actinobacteria. RAPD analysis enabled the discrimination of the isolates at the infraspecific level, 
allowing the identification of 45 distinct genetic band patterns. The chromatographic results showed the preference 
of all of bacteria to biodegrade nonadecanoic acid and squalane when grown in biomarker mixture. The results of 
this study provide further insight into the taxonomy of the cultivated fraction of microbial communities of Brazilian oil 
reservoirs and may offer potential tools for future application in bioremediation processes.
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Introduction
A large part of the oil resources in our planet is constituted by heavy 

oil, i.e., oil reservoirs that have suffered biodegradation at a certain 
extent [1]. There are many factors contributing to the oil degradation, 
including physical-chemical factors, such as the environmental pH, 
organic matter content, temperature, and the oil chemical composition, 
as well as biological factors, such as the microbial distribution in 
the environment, physiological and metabolic adaptations and 
composition of the microbial community [2].

Despite their importance for the Brazilian oil industry, the 
diversity of microorganisms associated with biological processes in oil 
reservoirs is still poorly understood. Studies related to the investigation 
of the biodiversity of microbial communities associated with 
petroleum deposits are of great significance, since they allow a deeper 
understanding of the structure and dynamics of those communities 
and the characterization of their putative functions in the environment. 
All this information will provide subsidies for the adoption of future 
measures for prevention or remediation processes of oil biodegradation 
and/or pipeline and associated equipment biocorrosion [3].

Recent studies from European and American research groups 
have demonstrated a great taxonomic and functional diversity of 
microorganisms in such environments, many of which representing 
new species and genera, including thermophylic, thermo-tolerant, 
aerobic and anaerobic species [4-6]. Nazina et al. [5] described a 
taxonomic study of a Geobacillus species from petroleum formation 
water samples collected in Russian, Kazakhstan and China. Magot et al. 
[4] described two new species of sulfate-reducing bacteria, Desulfovibrio
bastiniie and D. gracilis, isolated from water samples collected in an
oil reservoir in Congo. Other studies include a description of the
species Thermotoga subterranea [7], Deferribacter thermophilus [8]

Halanaerobium congolense [9], Petrotoga mobilis [10] and, more 
recently, the species Thermosipho geolei [11], Petrotoga olearia and 
P. siberica [12], anaerobic, thermophilic and fermentative bacteria
isolated from continental petroleum reservoir in Western Siberia.

More recently, investigation of the diversity of microbial 
communities employing cultivation-dependent and independent 
methods identified many aerobic genera in oil reservoirs at high 
temperature in the Northern Sea, including Sphingomonas, 
Stenotrophomonas, Xanthomonas, Agrobacterium, Pseudomonas, 
Bacillus, Microbacterium, Marinobacter, among others [13].

In Brazil, studies of microbial communities associated with 
oil reservoirs, using either conventional culturing techniques or 
cultivation-independent methods, are scarce. Recent studies developed 
by our research group revealed the recovery and/or detection of a wide 
variety of bacteria in oil samples from deep wells with different degrees 
of biodegradation (non-biodegraded and highly biodegraded) from the 
Campos Basin [14,15]. These microorganisms were shown to be related 
to the bacterial genera Acidithiobacillus, Acinetobacter, Arcobacter, 
Marinobacter, Alicyclobacillus, Bacillus, Halanaerobium,Leuconostoc, 
Streptococcus, Propionibacterium,Rhodococcus andStreptomyces, 
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distributed in 3 different phyla. Additionally, some of these bacteria 
were shown to be exclusive to the biodegraded oil sample, such as 
Acinetobacter, Bacillus and Streptococcus [15]. Species of Acinetobacter 
and Bacillus have been associated with oil and hydrocarbon degradation 
in many other studies [16-19]. Further biodegradation studies, 
performed with bacterial isolates obtained from the same petroleum 
samples described in Sette et al. [15], showed the recovery of bacteria 
capable of degrading different petroleum biomarkers [20,21]. Another 
recent study, using samples from a deep subsurface reservoir rock 
(2,800 m below seafloor) in Campos Basin [22], revealed the presence 
of bacteria related to the genera Variovorax and Rubrivivax, described 
as hydrocarbon degraders [23,24], and to the genera Comamonas and 
Azoarcus, associated to bioremediation processes [25,26]. Members of 
the Alphaproteobacteria class belonging to the genera Bradyrhizobium, 
Rhodopseudomonas, Phyllobacterium and Methylobacterium, known 
as aromatic compound degraders, and Defluvibacter, described as 
chlorophenol degraders, were also detected by Von der Weid et al. 
[22]. In addition, several different Bacillus strains isolated from deep 
reservoir rocks showed the ability to degrade oil and grow in different 
sources of hydrocarbons [27].

In this context, the present study aimed to characterize the 
taxonomic and genetic diversity of aerobic bacteria isolated from 
oil reservoirs of the Campos Basin and to assess their potential for 
degradation of petroleum biomarkers.

Material and Methods
Sampling and bacterial isolation

Oil and formation water samples were obtained in July of 2005 
from five production reservoirs in an oil field from the Campos Basin 
(Macaé, RJ, Brazil), with logistic support of CENPES/Petrobras. 
Reservoirs from these wells differ in temperature and depth, allowing 
variable levels of oil degradation. Special operations made before 
sampling assured the origin of the oil from a specific production 
interval. Strict procedures were followed during sampling in order to 
avoid contaminations. Samples were collected in triplicate using 500 ml 
sterilized Schott bottles, which were completely filled with the samples 
in order to prevent oxygen influx. The samples were kept on ice during 
transportation to the laboratory, and stored at room temperature for 
further enrichment and isolation assays. A detailed coverage on the 
study area, geological and geochemical background, as well as the 
characteristics of the petroleum reservoirs and geochemical properties 
of oil samples were given in Vasconcellos et al. [21].

A collection of 98 bacterial isolates was analyzed in this work. From 
these, 71 strains were isolated from aerobic enrichments using the oil 
and formation water samples as inoculum, according to protocols 
described by Vasconcellos et al. [21]. Aliquots (100 μl) of the microbial 
enrichment were plated on nutrient agar (Difco), trypticase soy agar 
(Difco), marine agar (Difco), BHI (Difco) and GYM (glucose 4 g, yeast 
extract 4 g, malt extract 10 g, calcium carbonate 2 g, distilled water to 
1000 ml, pH 7.2). The media NA and GYM were used with and without 
1.5% NaCl supplementation. The plates were incubated at 28°C, 35°C 
and 50°C, in duplicate, for 10 days. Microbial growth was monitored 
every 2 days. Isolates obtained were further streaked onto the surface 
of fresh plates and checked for purity prior to subsequent molecular 
identification.The remaining 27 strains were isolated previously from 
the same oil and formation water samples [28]. The bacterial strains 
were preserved at -80°C in the isolation medium added by 10% 
glyceroland deposited at the Brazilian Collection of Environmental 

and Industrial Microorganisms (CBMAI/UNICAMP, Brazil), under 
the acronyms listed in table 1.

Bacterial DNA extraction and PCR amplification

After bacterial growth on agar plates, genomic DNA of pure culture 
was isolated using one of the protocols previously described by Pitcher 
et al. [29] Young and Blakesley [30] and Pospiech and Neumann [31]. 
PCR amplification of 16S rDNA gene fragments was performed using 
the primers 27F [32] and 1401R [33], homologous to conserved regions 
of the 16S rRNA gene of the Bacteria Domain. Fifty μl reaction mixtures 
containing 50-100 ng of genomic DNA, 2 U of Taq DNA polymerase 
(Invitrogen), 1X Taq buffer, 1.5 mM MgCl2, 0.2 mM of dNTP mix 
(GE Healthcare) and 0.4 μM each primer.The amplification program 
consisted of 1 cycle at 95°C for 2 min, 30 cycles at 94°C for 1 min, 55°C 
for 1 min, 72°C for 3 min and 1 cycle of final extension at 72°C for 3 
min, in an Eppendorf thermal cycler. PCR amplification of 16S rRNA 
gene fragments was confirmed on 1% agarose gel stained with ethidium 
bromide (0.1 mg/ml).

Primers gyrB UP-1 and UP-2r [34] were used for the amplification 
of DNA gyrase subunit B genes of the isolates identified as belonging 
to the B. pumilus/B. safensis group based on 16S rDNA sequences. 
Twenty five-μl reaction mixtures contained 50 ng of genomic DNA, 2 
U of Taq DNA polymerase (Invitrogen), 1X Taq buffer, 1.5 mM MgCl2, 
0.2 mM of dNTP mix (GE Healthcare) and 0.4 μM each primer. The 
PCR amplification program consisted of 1 cycle at 94°C for 5 min, 30 
cycles at 94°C for 1 min, 60°C for 1 min, 72°C for 2 min and 1 cycle of 
final extension at 72°C for 7 min, in an Eppendorf thermal cycler. PCR 
amplification of gyrB gene fragments was confirmed on 1% agarose gel 
stained with Sybr Safe (Invitrogen).

Primer sets BT1/BT2r and BC1/BC2r [35], for Bacillus 
thuringiensisand Bacillus cereus, respectively, were used for PCR 
amplification of the gyrase genes. Fifty-μl reaction mixtures contained 
50 ng of genomic DNA, 2.5 U of Taq DNA polymerase (Invitrogen), 1X 
Taq buffer, 1.5 mM MgCl2, 0.2 mM of dNTP mix (GE Healthcare) and 
0.4 μM each primer.The PCR program consisted of 1 cycle at 94°C for 5 
min, 30 cycles at 94°C for 1 min, 55°C for 1.5 min, 72°C for 2.5 min and 
1 cycle of final extension at 72°C for 7 min, in an Eppendorf thermal 
cycler.PCR amplification of gyrB gene fragments was confirmed on 1% 
agarose gel stained with Sybr Safe (Invitrogen).

ARDRA

ARDRA (Amplified Ribosomal DNA Restriction Analysis) was 
employed in order to select isolates representing potentially different 
taxonomic groups for subsequent sequencing and identification. The 
PCR products were digested separately using three restriction enzymes, 
Msp I, Hae III and Alu I (GE Healthcare), at 37°C for 2 h. Ten µl reaction 
mixtures contained 5 µl (~0.5 to 1.0 µg) PCR products, 3 U restriction 
enzyme and 1 µl enzyme buffer (10X). Digestion products were run in 
electrophoresis at 120 V for 2 h 40 min in 2.5% agarose gel stained with 
ethidium bromide. Polymorphic profiles were then visualized on a UV 
transilluminator and documented using the equipment BioImaging 
Systems UVP (UVP, Upland, CA, USA).

Sequencing and phylogenetic analysis

16S rDNA fragments of isolates exhibiting distinct ARDRA 
patterns (ribotypes) were further purified using mini-columns 
(GFX PCR DNA and Gel Band Purification Kit, GE Healthcare) 
and subjected to sequencing in an automated sequencer (MegaBase 
500, GE Healthcare). The sequencing reactions were performed with 
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Deposit number Identification 16S rRNA / GyrB accession number ARDRA profile bOrigin of strains Culture medium/ 
growth temperature

CBMAI 960 Bacillus safensis SG 1 GQ272660
JQ183055

8 P4 NA,  28ºC

CBMAI 961 Bacillus safensis SG 2 GQ272661 8 P5 NA, 28ºC
CBMAI 962 Bacillus safensis SG 3 GQ272662 8 P3 NA,  28ºC
CBMAI 963 Bacillus safensis SG 4 GQ272663 8 P2 NA,  28ºC

CBMAI1278 Bacillus safensis SG 5 JQ183021
JQ183057 7 P2 NA,  28ºC

CBMAI 964 Bacillus safensis SG 6 GQ272664 5 P2 NA,  28ºC
CBMAI1279 Bacillus safensis SG 7 a 8 AF NA,  28ºC
CBMAI1280 Bacillus safensis SG 8 a 8 AF NA,  28ºC
CBMAI1281 Bacillus safensis SG 9 a 8 AF NA,  28ºC

CBMAI 965 Bacillus safensis SG 10 GQ272665
JQ183053 5 AF NA,  28ºC

CBMAI1282 Bacillus safensis SG 11 a 8 AF NA,  28ºC
CBMAI 966 Bacillus safensis SG12_1 GQ272666 8 AF NA,  28ºC

CBMAI1283 Bacillus safensis SG12_2 JQ183020
JQ183052 5 AF NA,  28ºC

CBMAI 967 Bacillus safensis SG 13 GQ272667 5 AF NA,  28ºC
CBMAI1284 Bacillus safensis SG 14 a 8 AF NA,  28ºC
CBMAI1285 Bacillus thuringiensis SG 15 a 12 P3 NA,  28ºC
CBMAI 968 Bacillus safensis SG 16 GQ272668 8 AF NA,  28ºC
CBMAI1286 Bacillus safensis SG 18 a 5 AF NA,  28ºC
CBMAI1287 Bacillus thuringiensisSG 20 a 12 P2 NA,  28ºC
CBMAI1288 Bacillus thuringiensisSG 21 JQ183025 12 P2 NA,  28ºC
CBMAI1323 Bacillus simplexSG 23_2 JQ183028 15 P3 TSA,  28ºC
CBMAI1324 Bacillus sphaericusSG 24 a 14 P1 NA,  28ºC
CBMAI1325 Bacillus sphaericusSG 25 JQ183027 14 P1 NA,  28ºC
CBMAI 969 Bacillus safensis SG 26 GQ272669 9 P1 NA,  28ºC
CBMAI 970 Bacillus safensis SG 27 GQ272670 8 P1 NA,  28ºC
CBMAI1289 Bacillus safensis SG28 a 8 AF NA,  28ºC
CBMAI 971 Bacillus safensis SG 29 GQ272671 9 AF NA,  28ºC

CBMAI 972 Bacillus safensis SG 30 GQ272672
JQ183056 6 AF BHI,  28ºC

CBMAI1290 Bacillus safensis SG 31 a 9 AF NA,  28ºC
CBMAI 973 Bacillus safensis SG 32 GQ272673 9 AF NA,  28ºC
CBMAI1291 Bacillus safensis SG 33 a 8 AF NA,  28ºC
CBMAI 974 Bacillus safensis SG 34 GQ272674 9 AF NA,  28ºC
CBMAI 975 Bacillus safensis SG 35 GQ272675 9 AF NA,  28ºC
CBMAI1292 Bacillus safensis SG 36 a 9 AF NA,  28ºC

CBMAI1321 Stenotrophomonas maltophiliaSG 
40 JQ183019 3 P1 NA,  28ºC

CBMAI1293 Bacillus safensis SG 41_1 a 5 AF NA,  28ºC
CBMAI1294 Bacillus safensis SG 41_2 a 5 AF TSA,  28ºC
CBMAI 976 Bacillus safensis SG 42_1 GQ272676 9 AF NA,  28ºC
CBMAI 977 Bacillus safensis SG 43_1 GQ272677 9 AF NA,  28ºC
CBMAI1318 Bacillus safensis SG 43_2 a 6 AF TSA, 28ºC
CBMAI1295 Bacillus safensis SG 46 a 9 AF NA,  28ºC

CBMAI1326 Achromobacterxylosoxidans 
SG47_1 JQ18301 7 2 P1 NA,  28ºC

CBMAI1319 Bacillus sp. SG 47_2 JQ183022
JQ183051 10 P1 NA,  28ºC

CBMAI 978 Bacillus safensis SG 49 GQ272678 9 P3 NA,  28ºC
CBMAI 979 Bacillus safensis SG 50 a 9 P5 NA,  28ºC
CBMAI 980 Bacillus safensis SG 51_1 GQ272680 9 P5 NA,  28ºC
CBMAI1296 Bacillus safensis SG 51_2ª a 7 P5 NA,  28ºC

CBMAI1320 Staphylococcus warneri/pasteuri 
SG 52 JQ183026 13 P5 TSA, 28ºC

CBMAI 982 Bacillus safensis SG 54_1 GQ272682
JQ183059 9 AF NA,  28ºC

CBMAI 983 Bacillus safensis SG 54_2 GQ272683 9 AF NA,  28ºC
CBMAI1297 Bacillus safensis SG 55 a 9 AF NA,  28ºC
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the Kit DYEnamic ET Dye Terminator Cycle Sequencing Kit for 
MegaBace DNA Analysis Systems (GE Healthcare), according to the 
manufacturer´s specifications. Primers used for sequencing were 10F, 
1100R [32] and 782R [36]. Sequencing of the fragments corresponding 

to the gyrase partial gene was performed using the primers UP-1 and 
UP-2r [34].

Partial gene sequences, 16S rRNA or gyrase, obtained with each 

CBMAI 984 Bacillus safensis SG 56 GQ272684 5 AF NA,  28ºC

CBMAI1298 Bacillus sp. SG 57 JQ183023
JQ183058 11 AF NA,  28ºC

CBMAI1299 Bacillus safensis SG 58_1 a 9 AF NA,  28ºC
CBMAI 985 Bacillus safensis SG 58_2 GQ272685 9 AF NA,  28ºC

CBMAI1322 Stenotrophomonas maltophilia 
SG 59 JQ183018 4 P5 NA,  28ºC

CBMAI 986 Bacillus safensis SG 61 GQ272686 7 AF NA,  28ºC
CBMAI1300 Bacillus safensis SG 62 a 5 AF NA,  28ºC
CBMAI1277 Bacillus thuringiensisSG_C JQ183024 12 P2 NA,  28ºC
CBMAI1316 Bacillus firmus P1_1 JQ183033 24 P1 TSA, 35ºC
CBMAI1383 Bacillus megaterium P1_4 JQ183034 25 P1 TSA,  28ºC
CBMAI1276 Bacillus thuringiensisP2_1 JQ183031 12 P2 MA, 35ºC
CBMAI1380 Bacillus megaterium P2_2 a 25 P2 TSA, 50ºC
CBMAI1365 Micrococcus luteus P4_1 JQ183041 18 P4 MA, 35ºC
CBMAI1379 Micrococcus luteus P4_3 JQ183040 18 P4 TSA, 35ºC
CBMAI1366 Micrococcus luteus P4_4 a 18 P4 MA, 35ºC
CBMAI1399 Micrococcus luteus P4_5 a 18 P4 GYM, 35ºC

CBMAI1370 Staphylococcus warneri/ pasteuri 
P5_3 JQ183036 13 P5 TSA,  28ºC

CBMAI1381 Halomonas shengliensis AF 5 JQ183046 27 AF TSA, 35ºC
CBMAI1382 Halomonas shengliensis AF 6 a 27 AF TSA, 35ºC
CBMAI1367 Marinobacter lutaoensisAF8 a 21 AF TSA, 35ºC
CBMAI1368 Marinobacter lutaoensis AF9 JQ183045 22 AF MA, 35ºC

CBMAI1369 Staphylococcus warneri/ pasteuri 
AF10

a 13 AF MA, 35ºC

CBMAI1371 Marinobacter lutaoensisAF 12 a 21 AF TSA, 35ºC
CBMAI1384 Marinobacter lutaoensisAF13 JQ183043 21 AF TSA, 35ºC
CBMAI1385 Halomonas shengliensis AF14 JQ183047 27 AF TSA, 35ºC
CBMAI1372 Micrococcus luteus AF16 JQ183042 18 AF TSA  28ºC
CBMAI1386 Halomonas shengliensis AF17 JQ183048 27 AF TSA,  28ºC
CBMAI1387 Halomonas shengliensis AF18 a 27 AF MA,  28ºC
CBMAI1388 Halomonas shengliensis AF19 a 27 AF MA, 35ºC
CBMAI1378 Marinobacter lutaoensisAF 20 JQ183029 16 AF MA, 35ºC
CBMAI1373 Marinobacter lutaoensisAF21 JQ183044 21 AF MA,35ºC
CBMAI1397 Marinobacter lutaoensisAF26 a 21 AF MA, 35ºC
CBMAI1389 Marinobacter lutaoensisAF27 a 21 AF MA, 35ºC
CBMAI1390 Halomonas shengliensis AF28 JQ183049 28 AF MA, 50ºC
CBMAI1391 Halomonas shengliensis AF 29 JQ183016 1 AF MA, 50ºC
CBMAI1392 Halomonas shengliensis AF30 a 27 AF MA,  28ºC
CBMAI1374 Staphylococcus hominis AF32 JQ183035 13 AF MA, 35ºC
CBMAI1375 Marinobacter lutaoensisAF33 a 21 AF MA, 35ºC
CBMAI1393 Halomonas shengliensis AF34 a 27 AF MA, 35ºC

CBMAI1275 Bacillus pumilusAF35 JQ183032
JQ183054 26 AF MA, 35ºC

CBMAI1394 Marinobacter lutaoensisAF39 a 21 AF MA, 35ºC
CBMAI1395 Marinobacter lutaoensisAF40 a 16 AF MA, 50ºC

CBMAI1400 Streptomyces alboniger/ 
chartreusis/moderatus AF43 JQ183037 23 AF TSA, 35ºC

CBMAI1401 Kocuria rosea AF44 JQ183039 19 AF GYM,  28ºC

CBMAI1376 Streptomyces alboniger/ 
chartreusis/moderatus AF45 JQ183038 20 AF GYM,  28ºC

CBMAI1396 Marinobacter lutaoensisAF 46 JQ183030 17 AF GYM,  28ºC
CBMAI1377 Citreicella thiooxidans AF47 JQ183050 29 AF MA, 35ºC

aBacteria were not sequenced, identification was achieved by comparing ARDRA profiles.
bOrigin of strain: AF-Formation Water; P1–Oil well 1; P2–Oil Well 2; P3–Oil Well 3; P4–Oil Well 4; P5 Oil Well 5.

Table 1: Bacterial strains isolated from petroleum formation water and oil samples, deposit number at CBMAI, genbank access numbers, ARDRA profiles, origin of strains, 
culture media and incubation temperature.



Citation: Oliveira PFL, Vasconcellos SP, Angolini CFF, da Cruz GF, Marsaioli AJ, et al. (2012) Taxonomic Diversity and Biodegradation Potential 
of Bacteria Isolated from Oil Reservoirs of an Offshore Southern Brazilian Basin. J Pet Environ Biotechnol 3:132. doi:10.4172/2157-
7463.1000132

Page 5 of 14

Volume 3 • Issue 7 • 1000132
J Pet Environ Biotechnol
ISSN: 2157-7463 JPEB, an open access journal 

primer were assembled into a contig using phred/Phrap/CONSED 
program [37,38]. Identification was achieved by comparing the 
contiguous 16S rRNA or gyrase sequences obtained with sequence 
data from reference and type strains available in the public databases 
GenBank (www.ncbi.nlm.nih.gov) and RDP (Ribosomal Database 
Project-Release 10; http://rdp.cme.msu.edu/). The sequences were 
aligned using the CLUSTAL X program [39] and analyzed with MEGA 
software v.4 [40]. Evolutionary distances were derived from sequence-
pair dissimilarities calculated as implemented in MEGA, using Kimura’s 
DNA substitution model [41]. The phylogenetic reconstruction was 
done using the neighbor-joining (NJ) algorithm [42], with bootstrap 
values calculated from 1000 replicate runs.

Nucleotide sequence accession numbers

Sequences determined in this study were deposited at the Genbank 
database under the accession numbers JQ183016 to JQ183050 for the 
16S rRNA gene sequences, and JQ183051 to JQ183059 for the gyrase 
gene sequences, both listed in table 1.

RAPD analysis

The molecular technique RAPD (Random Amplified Polymorphic 
DNA) was employed in order to genetically differentiate the bacterial 
isolates belonging to the same species. Three of the six primers listed 
below were used for typing the bacterial strains in RAPD independent 
reactions: UBC # 12 (5´-CCT GGG TCC A-3´), UBC # 25 (5´-ACA 
GGG CTC A-3´), UBC # 31 (5´-CCG GCC TTC C-3´), UBC # 2 (5´-
CCT GGG CTT G-3´), UBC # 4 (5´-CCT GGG CTG G-3´) and UBC # 
15 (5´-CCTGGGTTTG-3´) (Set 100/1; University of British Columbia, 
Vancouver, Canada).

Twenty five μl reaction mixtures contained 5 ng of genomic 
DNA, 2 U of Taq DNA polymerase (Invitrogen), 1X Taq buffer, 1.5 
mM MgCl2, 0.2 mM of dNTP mix (GE Healthcare) and 1 mM primer.
The amplification program consisted of one cycle at 95ºC for 2 min, 
30 cycles of 30 seconds at 94ºC, 30 seconds at 36ºC and 1 minutes at 
72ºC and final extension cycle at 72ºC for 3 minutes. The primers used 
were selected among those producing the most polymorphic profiles 
in a preliminary screening. The RAPD products were subjected to 
electrophoresis at 100 V for 2 h 30 min in 1.5 % agarose gel stained 
with ethidium bromide. 

The gel images obtained with ARDRA and RAPD techniques were 
analyzed using the program Gelcompar 4.1 (Applied Maths, Kortrijk, 
Bélgica). Gels were normalized and UPGMA-based dendrograms 
constructed from Pearson (product-moment) correlation coefficient 
matrices [43]. The value of ≥70 % similarity was used as the cut off for 
the establishment of ARDRA clusters. The consistency of the clusters 
as representatives of different taxonomic groups was confirmed by 
sequencing and phylogenetic analysis of some isolates. For the analysis 
of the genetic fingerprints obtained by RAPD, the value of ≥75 to 80% 
similarity was used as the cut off for the genetically identical isolates 
[44].

Biodegradation assays

The bacterial strains were firstly cultured in Erlenmeyer flasks 
(1000 ml) containing 400mlof the same medium used for the isolation 
and at the appropriate temperature (Table 1). After 48 h of incubation 
on a rotational shaker (150 rpm), the biomass was recovered by 
centrifugation (11.5 g, 18oC, and 20 min). The supernatant was 
discarded and the pellet (ca. 0.2 g) transferred to Erlenmeyer flasks 

(125 µl) containing 40 ml Zinder medium [45] for the subsequent 
biodegradation assays.

Nonadecanoic acid (Aldrich), 4-cholesten-3-one (Aldrich), 
squalane (Aldrich). 9,10-dihydrophenanthrene (Aldrich) and 
nonadecane (Aldrich)were applied as substrates for the microbial 
growth and representatives of different classes of Brazilian petroleum 
biomarkers. Each compound (0.010 g) was prepared as previously 
described by Vasconcellos et al. [21]. Briefly, they were homogenized 
using tween 80 (300 µl), absolute ethanol (300 µl) and ethyl acetate 
(400 µl) as eluents. The final concentration of each biomarker in the 
biodegradation assays was 0.25 mg/ml. Negative controls were also 
developed, consisting of: (i) Zinder mineral medium added by the 
solubilized biomarkers; (ii) mineral medium plus biomarker solution 
and bacterial dead cells (autoclaved); (iii) solely mineral medium; (iv) 
inoculum of the bacterial strain in the mineral medium containing the 
eluents without biomarkers [21].

The flasks were inoculated in triplicate for each time sampled (0, 
7, 14, 21 and 28 days) and incubated on a rotational shaker at 150 
rpm. The production of microbial metabolites and the biomarkers 
degradation were monitored by GC–MS analysis. The biodegradation 
ability of the isolates was monitored using the biomarkers in mixtures 
(named here as biomarker cocktail). 

After growth, the total culture volume of each assay, including 
the controls, were transferred to glass vials and submitted to organic 
extraction (2X) using ethyl acetate (20 ml) as eluent. The vials were 
vortexed and the organic phase was transferred to other vials. The 
organic extracts were derivatized by methylation reaction according 
method described by Kosak et al. [46] followed by drying at N2 flux. The 
dried extracts were diluted in ethyl acetate (995 µl) and heptadecane 
solution (5 µl, 0.03 mg/ml), used as internal standard in the GC–MS 
analysis. 

GC-MS analysis were performed using a HP6890II instrument 
coupled to a mass detector HP5970-MSD, equipped with a HP-5-MS 
fused silica column (30 m×0.25 mm, 0.25 µm film thickness). He was 
the carrier gas (ca. 1 ml minˉ¹) and the oven temperature program was 
60–290°C (held 5 min) at 10°C minˉ¹. The instrument was operated 
in the SCAN mode over a range of m/z 50–700. The injector (240°C) 
was operated in the split mode (10:1). The extent of biodegradation 
was measured from the chromatographic data, applying the equations 
based on calculations described by Aldas et al. [47], and detailed by 
Vasconcellos et al. [21].

Results
ARDRA, sequencing and phylogenetic analysis

Ninety eight strains of aerobic organotrophic bacteria isolated from 
oil and formation water samples were differentiated by macroscopic 
(colony color, form and size) and microscopic (cell morphology and 
Gram-staining) characteristics (data not shown). Bacterial isolates were 
subsequently subjected to ribotyping by ARDRA in order to select band 
patterns (ribotypes) for subsequent phylogenetic affiliation. Screening 
by ARDRA with 3 different enzymes allowed the detection of 28 
bacterial ribotypes representing potentially different taxonomic groups 
(Table 1). In total, 39 bacteria were selected for further identification 
via molecular taxonomy, based on partial sequencing and phylogenetic 
analysis of 16S rRNA genes. Identification of the remaining 59 bacterial 
isolates was based on the comparison of their ribotypes with the ones of 
the sequenced strains (Table 1).

Phylogenetic analysis of 16S rDNA sequences of the isolates revealed 

http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/probematch/search.jsp


Citation: Oliveira PFL, Vasconcellos SP, Angolini CFF, da Cruz GF, Marsaioli AJ, et al. (2012) Taxonomic Diversity and Biodegradation Potential 
of Bacteria Isolated from Oil Reservoirs of an Offshore Southern Brazilian Basin. J Pet Environ Biotechnol 3:132. doi:10.4172/2157-
7463.1000132

Page 6 of 14

Volume 3 • Issue 7 • 1000132
J Pet Environ Biotechnol
ISSN: 2157-7463 JPEB, an open access journal 

that ribotypes represented, in fact, 16 different taxonomic groups. 
Additionally, phylogenetic analysis allowed for the identification of 
many bacterial members at the species level (Figure 1-3). Isolates P1_1, 
P1_4, SG23_2 and SG25 clustered, respectively, with Bacillus firmus, 
Bacillus megaterium, Bacillus simplex and Bacillus sphaericus, with high 
bootstrap values (97-99%) 

On the other hand, some bacterial isolates could not be identified 
at the species level due to the conserved nature of the 16S rRNA gene 
of the related species. This was the case of the isolates P5_3 and SG52, 
which clustered with Staphylococcus pasteuri and Staphylococcus 
warneri (Figure 1), and the isolates AF46 and AF45, which grouped with 
Streptomyces chartreusis, Streptomyces moderatus and Streptomyces 
alboniger (Figure 3). 

In addition, isolates SG1, SG5, SG10, SG47_2, SG54_1, SG57 
and AF35 clustered, with a high bootstrap value (99%), with Bacillus 
pumilus and B. safensis strains, including the type strains of suchspecies 
(Figure 1). And finally, this was also observed for the isolates SG21 
and P2_1, that grouped with Bacillus cereus and Bacillus thuringiensis 
16S rRNA sequences (99% boostrap value). For the Bacillus-related 
isolates, the gyrase gene (gyr) was used as an alternative phylogenetic 
marker to allow for the identification at the species level. Phylogenetic 
reconstruction based on the gyrase gene revealed that isolatesSG1, SG5, 
SG10, SG12_2, SG30 and SG54_1grouped with Bacillus safensis (70-
90% boostrap value) and AF35 with Bacillus pumilus (100% boostrap 
value) Figure 4.

SG47_2 and SG57 grouped with each other in a separate cluster 
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Figure 1: Phylogenetic analysis based on partial 16S rRNA sequences (~1000 pb) obtained from the bacteria belonging to the Phylum Firmicutes isolated from oil and 
formation water samples and related species. Bootstrap values (1,000 replicate runs, shown as %) greater than 70% are listed. GenBank accession numbers are listed 
after species names. Streptomyces alboniger was used as outgroup.
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supported by100% boostrap value. Although they were shown to be 
more closely related to B. safensis, the evolutionary distance observed 
in the phylogenetic tree suggests that they may represent a new Bacillus 
species.

Identification of isolates SG_C, SG15, SG20, SG21 and P2_1at the 
species level was achieved by specific PCR amplification using two 
sets of primers for the gyrase gene, one for Bacillus cereus and other 
for Bacillus thuringiensis. Amplification of the gyrase gene for these 
isolates was positive only when using the Bacillus thuringiensisprimers 
(Figure 5). 

RAPD

Isolates belonging to the same species were subjected to RAPD 
typing, using 3 primers in independent reactions, aiming at the 
differentiation at the infra-specific level. RAPD fingerprints allowed us 
to successfully discriminate the genetically distinct isolates.

Except for the species Bacillus sphaericus and Stenotrophomonas 
maltophilia, all the taxa under study presented more than one RAPD 

profile, revealing a great genetic diversity among the isolates recovered 
from the petroleum samples. Although the majority of the isolates 
recovered belonged to the Bacillus safensis species, actually only half of 
them represented genetically distinct isolates (Table 2).

Biodegradation of petroleum biomarkers 

The potential of the isolated bacteria to biodegrade petroleum 
biomarkers was evaluated by GC-MS analysis. As a common profile 
of all the evaluated strains, it could be observed the preferential use 
of the acid biomarker as substrate. The same fact was also reported by 
Vasconcellos et al. [21] when evaluating aerobic bacteria isolated from 
the Campos Basin. 

Biodegradation results revealed the ability of the bacterial strains 
obtained from the petroleum samples to degrade the evaluated 
hydrocarbonsin values up to89%.The comparison of the biodegradation 
values of the different hydrocarbons offered as substrates showed that 
the biomarker squalane was preferentially biodegraded by the majority 
of the strains. On the other hand, phenanthrene and nonadecane were 
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Figure 2: Phylogenetic analysis based on partial 16S rRNA sequences (~1000 pb) obtained from the bacteria belonging to the Phylum Proteobacteria isolated from oil 
and formation water samples and related species. Bootstrap values (1,000 replicate runs, shown as %) greater than 70% are listed. GenBank accession numbers are 
listed after species names. Bacillus sphaericus was used as outgroup.
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Figure 3: Phylogenetic analysis based on partial 16S rRNA sequences (~1000 pb) obtained from the bacteria belonging to the Phylum Actinobacteria isolated from oil 
and formation water samples and related species. Bootstrap values (1,000 replicate runs, shown as %) greater than 70% are listed. GenBank accession numbers are 
listed after species names. Achromobacter xylosoxidans was used as outgroup. 
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Figure 4: Phylogenetic analysis based on partial gyrase gene sequences obtained from the bacterial isolates belonging to the Bacillus safensis/B. pumilus group. 
Bootstrap values (1,000 replicate runs, shown as %) greater than 70% are listed. GenBank accession numbers are listed after species names. Bacillus anthracis was 
used as outgroup. 
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almost not biodegraded by any of the bacteria. Bacillus thuringiensis 
SG 21 biodegraded onlyphenanthrene and showed the highest 
biodegradation valuefor this biomarker (40%). The bacterial strains did 
not show biodegradation preference for the substrate 4-cholesten-3-
oneas well (Table 3).

Discussion
The ARDRA methodology was an effective tool capable to group 

the isolates according to their ribotypes and to allow for the selection 
of only a few representatives of such ribotypes for further sequencing. 
However, 16S rRNA gene sequencing and phylogenetic analyses 
revealed that, in fact, some ARDRA groups corresponded to the same 
bacterial species, suggesting infra-specific variation in the 16S rRNA 
gene of Stenotrophomonas maltophilia (2 ribotypes), Marinobacter 
lutaoensis (2 ribotypes) Halomonas shengliensis (2 ribotypes) and 
Bacillus safensis (7 ribotypes).

Molecular taxonomy based on the 16S rRNA phylogenetic marker 
showed that the cultivated aerobic bacteria recovered belonged to 16 
different species, distributed among 3 phyla: Firmicutes, Actinobacteria 
and Proteobacteria (classes Alphaproteobacteria, Betaproteobacteria 
and Gammaproteobacteria). Several genera of bacteria found in this 
study have already been detected in oil reservoirs, marine environments 
or associated with crude oil, such as Marinobacter, Halomonas [48,6], 
Achromobacter, Streptomyces [15], Micrococcus luteus [49], Kocuria [5], 
Staphylococcus and Stenotrophomonas [50], or have been commonly 
associated with the degradation of hydrocarbons, such as Bacillus [51]. 
The genera Marinobacter, Halomonas, Kocuria, Staphylococcus and 
Streptomyces have also been reported as hydrocarbon degraders of 
common occurrence in marine environments, [5,52-55].

The species Bacillus safensis was the most abundant cultivated 
bacteria recovered from the petroleum samples under study. These 
bacteria were isolated from all of the oil wells sampled, with different 
levels of biodegradation, depth and temperature, as well as from the 
formation water. In addition, the molecular typing method RAPD, 
used to differentiate the isolates at the infra-specific level, showed a 
high genetic diversity of Bacillus safensis in the samples. These data may 
suggest that B. safensis is adapted to the harsh conditions of petroleum 
reservoirs, i.e. high salinity, pressure and temperature and oxygen 
deficiency, indicating their ability to survive in extreme environments 
and their wide distribution in the Campos Basin reservoirs. This species 
was recently described by Satomi et al. [56] and is phylogenetically 
indistinguishable from Bacillus pumilus based solely on the 16S rRNA 
genetic marker, although this can be achieved on the basis of the gyrase 
gene. This was the first report on the occurrence of Bacillus safensis in 
petroleum-associated environments.

In this work, chromatographic analysis revealed that B. safensis 
strains SG 01, SG 30 and SG 32 were able to degrade 63% nonadecanoic 
acid and 13% nonadecane. The only strain of Bacillus pumilus found 
in this study, AF 35, showed degradation of all the biomarkers in the 
following percentages: 63% nonadecanoic acid, 79% squalane, 16% 
cholestenone, 15% phenanthrene and 9% nonadecane. Literature data 
have already reported one B. pumilus strain, isolated from an oil sample 
from Campos Basin, able to moderately biodegrade phytane (~40%) 
[21]. The same authors reported that B. pumilus populations could 
be broadly detected in biodegraded and non-biodegraded oil samples 
using a direct 5α-cholestane molecular approach based on group-
specific PCR detection.

Other previous studies corroborate the isolation of B. pumilus, as 
well as other Bacillus species, from Brazilian petroleum reservoirs [57]. 
Literature data have already demonstrated the excellent ability of B. 
pumilus to degrade petroleum hydrocarbons [49,58,59] suggesting its 
potential to damage the oils sampled in this study.

Other species of the genus Bacillus identified in this work, such as 
Bacillus sphaericus and Bacillusthuringiensis, have already been found 
in environments associated with oil, such as crude oil storage tanks [50] 
and soil and freshwater lakes contaminated with oil [27,60] isolated 
strains of Bacillus cereus from the rock of an oil reservoir from a virgin 
field located in a deep-water production basin in Brazil, suggesting that 
these bacteria are autochthonous in these environments. However, B. 
cereus strains isolated in previous studies neither showed the ability 
to degrade petroleum hydrocarbons [27,60] nor presented PCR 
amplification of catabolic genes, such as n-alkane monooxigenase, 
catechol 1,2-dioxygenase and catechol 2,3-dioxigenase [27]. These 
data corroborate the results found in the present work, since some 
Bacillus spp. showed insignificant to moderate ability to degrade the 
biomarkers used in the GC-MS assays. These results may suggest that 
these bacteria are secondary degraders, i.e. they assimilate metabolites 
produced by the primary hydrocarbon biodegraders. As to the species 
B. simplex, no previous reports were found regarding the presence of 
this bacterium in marine or oil-related environments. In this study, 
Bacillus simplex strain SG23_2 was able to degrade 62% nonadecanoic 
acid and 79% squalane. On the other hand, the species Bacillus firmus 
has been isolated from different petroleum-associated environments, 
such as contaminated soils and oil reservoirs, and reported as being 
able to degrade polycyclic aromatic and aliphatic hydrocarbons [48,61]. 
Results obtained in the present study revealed significant nonadecanoic 
acid (63%) and squalane (68%) degradation extents by B. firmus strain 
P1_1, confirming literature data.

1     2     3     4      5     6     7    8     9    10    11    12   13  14  15 

Figure 5: PCR amplification using gyrase gene-specific primer sets and 
genomic DNA from bacterial isolates belonging to the Bacillus cereus/B. 
thuringiensis group. (a) Lane 1, DNA molecular marker (100 bp DNA ladder, 
Fermentas); 2 to 8, isolates SGC, SG15, SG20, SG21, P2_1, positive and 
negative control, respectively, with primer set specific for Bacillus thuringiensis, 
9 to 15, isolates SGC, SG15, SG20, SG21, P2_1, positive and negative control, 
respectively, with primer set specific for Bacillus cereus. Positive controls used 
for PCR were Bacillus cereus LFB-FIOCRUZ 406T and Bacillus thuringiensis 
serovar israelensis LFB-FIOCRUZ 584, provided by Fiocruz.

Species Number of isolates Number of RAPD 
profiles

Bacillus safensis 48 23
Stenotrophomonas maltophilia 2 1
Bacillus thuringiensis 5 3
Bacillus sphaericus 2 1
Marinobacter lutaoensis 12 8
Bacillus megaterium 2 2
Staphylococcus warneri/S. pasteuri 3 3
Streptomyces chartreusis/S. moderatus 2 2
Micrococcus luteus 5 5
Halomonas shengliensis 10 5

Table 2: Summary of RAPD typing results of isolates belonging to the same 
species.
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Bacillus megaterium was also identified in this work and has 
already been reported in previous studies of bacterial isolation and 
biodegradation from petroleum environments [62].The ability of these 
bacteria to biodegrade petroleum hydrocarbons has been broadly 
demonstrated elsewhere [63,64]. In this study, Bacillus megaterium 
strainP2_2 degraded preferentially nonadecanoic acid (62%), in 
comparison to the other evaluated biomarkers.

Achromobacter xylosoxidans strain SG 47_1 was recovered from 
the non-biodegraded oil reservoir 1. Populations of A. xylosoxidans 
were previously detected in samples from reservoirs 3 and 5 using a 
direct molecular approach based on group-specific PCR [21]. Results 
found by these authors showed that A. xylosoxidans had the highest 
cholestane degradation index (89%), in addition to the ability of 
degrading phytane and nonadecanoic acid. Another study conducted 
by our research group reported the isolation of Achromobacter 
xylosoxidansfrom oil samples collected from one reservoir with a high 
level of biodegradation and temperature of 52oC [15]. These data may 
reflect the ability of this bacterium to survive under conditions of high 
pressure and temperatures between 52 and 85oC. This species has been 
isolated from diverse environments associated with oil other than oil 
reservoirs, such as refinery wastewater treatment plants [65] and crude 
oil storage tanks [50]. Several literature data have demonstrated the 
ability of A. xylosoxidansto degrade mono and polyaromatic petroleum 
hydrocarbons [66-68]. In the present work, A. xylosoxidans strain 
SG47_1 exhibited more significant biodegradation percentages for the 
nonadecanoic acid (50%) and squalane (83%), confirming its potential 
to biodegrade not only long chain acid but also branched hydrocarbon.

One of the strains identified in this study showed high 16S rRNA 
sequence similarity with Stenotrophomonas maltophilia and it could 
degrade 63% of nonadecanoic acid and 73% of the squalane. This species 
has been previously described as isolated from stored crude oil, with 
an excellent ability to grow on medium containing n-eicosane (C20) 
as sole carbon source, suggesting its potential to degrade petroleum 
compounds [50]. 

Bacteria belonging to the genus Marinobacter were also identified 
among the strains under study. Our results corroborate previous 
literature data on the detection of Marinobacter hydrocarbonoclasticus 
[6] and Marinobacter lipolyticus [15] in samples from oil reservoirs 
by using cultivation-independent methods. M. hydrocarbonoclasticus 
is an extremely halotolerant marine bacterium and able to degrade 
hydrocarbons [69,70,52], whereas M. lipolyticus is a halophilic 
species with lipolytic activity, originally isolated from hypersaline 
environments [71]. The strain identified in the present study was 
closely related with the species Marinobacter lutaoensis, which is a 
thermotolerant bacterium described from a hot spring on the coast of 
Taiwan [72]. The evaluation of the biodegradation results obtained for 
Marinobacter lutaoensis AF33 showed a preferential consumption of 
squalane (89%), followed by nonadecanoic acid (63%), which confirm 
the same profiles obtained for the other evaluated strains in this study. 

Two strains of Streptomyces spp. were recovered from the 
formation water samples, and although this genus is not frequent and/
or predominant in petroleum reservoirs, some representatives may be 
found in environments associated with oil or related to the degradation 
of hydrocarbons [6,73,74]. Representatives of this genus have been 
also detected in degraded and non-degraded oil samples from the 
Campos Basin by using 16S rDNA libraries [15]. The authors found 
a higher abundance of these populations in a non-biodegraded oil 
sample, suggesting that these organisms are not primarily responsible 
for degradation of hydrocarbons in these reserves. Streptomyces spp. 
were also reported by Vasconcellos et al. [21], using group-specific 
PCR. Streptomyces spp. strain AF 45 isolated in the present study was 
also evaluated in the biodegradation assays. It showed preferential 
biodegradation of nonadecanoic acid (50%), not presenting ability for 
the consumption of hydrocarbons as carbon sources. 

Ten strains isolated from formation water showed close 
phylogenetic relationship Halomonas shengliensis [75], which was 
recently described as a new species of moderately halophilic bacteria 
isolated from saline soil, contaminated with crude oil in the coastal 

Strains
Biodegradation level of evaluated compounds (%)a

9,10-dihydrophe nanthrene nonadecane nonadecanoic acid Squalane Cholestenone
Bacillus fimus P1_1 - b 3 63 68 16
Micrococcus luteus P4_1 19 13 63 89 18
Staphylococcus hominis AF 32 20 13 - 89 18
Marinobacter lutaoensis AF 33 14 2 63 89 18
Halomonas shengliensis AF 19 9 13 63 89 18
Citreicella thiooxidans AF 47 14 2 63 78 18
Bacillus simplex SG 23_2 2 10 62 79 18
Bacillus megaterium P 2_2 4 - 62 - 7
Bacillus sphaericus SG 25 7 9 60 82 18
Bacillus pumilus AF 35 15 9 63 79 16
Stenotrophomonas maltophilia SG 59 10 0.2 63 73 18
Bacillus thuringiensis SG 21 40 - - - -b

Achromobacter xylosoxidans SG 47_1 15 12 50 83 18
Kocuria rosea AF 44 17 11 63 79 18
Bacillus safensis SG 32 - 13 63 - - 
Streptomyces sp. AF 45 - - 50 - - 
Bacillus safensis SG 01 - 13 63 - -
Bacillus safensis SG 30 - 13 63 - -

a net values (obtained by subtracting values determined for the negative control containing dead cells from the total biodegradation percentage).
-b biodegradation undetected.

Table 3: Biodegradation percentages of the petroleum biomarkers by the bacterial isolates.
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Shengli oil field in China. In a study of bacterial communities using 
culture-independent methods, the authors also could found Halomonas 
spp. in production water samples from reservoirs in California [6]. 
As observed for the majority of the bacterial isolates in this study, 
Halomonas shengliensis AF 19 showed the high biodegradation values 
and preferential consume of nonadecanoic acid (63%) and squalane 
(89%) as substrate for its microbial growth. 

Staphylococcus hominis and Kocuria rosea have been previously 
found in soil contaminated with diesel oil obtained from an underground 
leak of a gas station [76]. The same authors described that these bacteria 
were the most prevalent among those isolated from the consortia, and 
they are able to accelerate the removal of petroleum hydrocarbons. The 
genus Kocuria was also reported in another phylogenetic diversity study 
of aerobic bacteria isolated from formation water of a Chinese reservoir 
and its ability to use petroleum hydrocarbons was also confirmed [5]. 
In our study, the strain AF 44 phylogenetically identified as Kocuria 
rosea followed the degradation pattern of the most bacterial isolates, 
with highest percentages of biodegradation for nonadecanoic acid 
(63%) and squalane (79%). Differently, Staphylococcus hominis strain 
AF 32 did not show ability to biodegrade nonadecanoic acid, but it was 
able to degrade preferentially squalane (89%). 

The species Micrococcus luteus, recovered in this study from the 
formation water and from the highly biodegraded oil from reservoir 
4, has been reported in several studies as an efficient degrader of 
hydrocarbons, including naphthalene and phenanthrene [49,77,78]. 
In a previous study Vasconcellos et al. [21] found populations of 
Micrococcus spp. in oil reservoirs 1, 3, 4 and 5 and formation water from 
an oil field in the Campos Basin, using a direct molecular approach 
based on group-specific PCR. These authors also demonstrated 
that these bacteria have great capacity for biodegrading isoprenoids 
(phytane) and aromatics (dihydrophenanthrene), suggesting their 
potential as a spoiling agent in oil reservoirs. In thepresent work, 
M. luteusstrain P4_1 showed better results for the biodegradation of 
nonadecanoic acid (63%) and squalane (89%).

Citreicella thiooxidans, a new genus and species described by 
Sorokin et al. [59], was also identified from samples of petroleum 
formation water. These bacteria were first isolated from Black Sea 
and they depend of NaCl for growth. They have also ability to oxidize 
thiosulfate, sulfide and sulfur to sulfate, using the metabolic energy 
of these reactions for growth [79]. Citreicella thiooxidans strain AF 
47 was also found in our study, and it showed similar biodegradation 
profiles to the other isolates described, exhibiting preference for the 
degradation of nonadecanoic acid (64%) and squalane (78%).

In general, the results of the biodegradation assays revealed 
the preference of the bacterial isolates for the degradation of the 
nonadecanoic acid. This was also observed in previous studies of 
our research group for some Bacillus strains [21] and corroborates 
literature data on production and use of carboxylic acids during the 
aerobic microbial metabolism [80].

The evaluated strains revealed significant biodegradation values 
(up to 89%) for squalane, revealing a potential ability to biodegrade 
isoprenoid biomarkers. Nonadecane showed lower percentages of 
degradation and the nonadecanoic acid showed percentages around 
60% for most of the evaluated bacteria, except for Bacillus thuringiensis 
and Staphylococcus hominis.

A similar profile was described by Bogan et al. [81] in a study 
where Alkanindiges illinoisensis, an obligatory hydrocarbon degrading 
bacterium, was isolated from a soil of an oilfield in Southern Illinois. 

The authors reported that this strain could only grow when the medium 
was added of hydrocarbons, especially squalane. Radwan et al. [82] also 
reported about a bacterial strain, Arthrobacter nicotianae KCC B35, 
able to grow on hydrocarbons with chain lengths of C16 or longer. As 
it was found in the present work, Cabezali and collaborators isolated 
some strains able to hydrocarbon degradation, and one of these was 
capable to grow on linear alkanes and fatty acids [83.84].

In addition, the bacteria Mycobacterium fortuitum and 
Mycobacterium ratisbonense, isolated from a sewage treatment plant, 
were shown to be capable of utilizing the multiply branched hydrocarbon 
squalane and its analogous unsaturated hydrocarbon squalene as the 
sole carbon source for growth [85]. The authors evaluated the growth 
of both strains on alkanes, acyclic isoprenoids, and acids derived from 
these compounds in order to elucidate the pathway for the degradation 
of squalane by these bacteria. The results obtained allowed them to 
propose a putative pathway where, after the conversion of squalane to 
a dioic acid as one of the first intermediates, three propionyl coenzyme 
A and acetyl coenzyme A molecules are oxidatively removed by the 
β-oxidation route to form the 3,7,11-trimethyldodecandioic acid 
intermediate by a pathway analogous to that for the degradation of the 
multiply branched alkane pristine (2,3,10,14-tetramethylpentadecane). 
Finally, a β-methyl group of this intermediate can be converted into a 
carbonyl oxygen, thus generating a suitable substrate for β-oxidation 
and further degradation. These investigations could be important to 
develop a new approach to solve specific bioaccumulation problems 
associated with alkyl-branched compounds, like squalane, which 
confer molecular recalcitrance [85]. Thus, the present work allowed 
the recovery of bacterial strains with ability and preference to squalane 
biodegradation, corroborating previous literature data and opening the 
perspective for future application in biotechnological processes.

Although cultivation techniques have been improved and have 
led to the in vitro recovery of a growing number of yet uncultivated 
microorganisms [86], our knowledge on their ecology remains 
insufficient to grow the most of them. This is particularly true for 
microbial communities that degrade recalcitrant compounds or 
pollutants, where the complexity of the metabolic processes required 
for this degradation leads to the formation of consortia containing 
bacteria of different genera and species; each one specialized in 
degrading one or more compounds [87]. In this context, the bacterial 
species recovered in the present study represent, in fact, only a small 
fraction of the total microbiota present in the environment of the oil 
reservoir, as already observed for many other natural environments 
[88]. Thus, possibly, many other species responsible for the in situ 
degradation of oil compounds were not recovered in this study, 
making clear the limitations imposed by the use of pure cultures in 
biodegradation studies.

Nonetheless, the results gathered in this study certainly contribute 
to the knowledge of the phylogenetic diversity of bacteria recovered 
from oil reservoirs, offering a great potential for basic research and 
technological exploitation. 
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