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Introduction
The targeted delivery of NPs to a specific site in the body has great 

potential to improve drug therapy. Through improved targeting, 
drawbacks in contemporary drug therapy could be overcome [1,2]. 
In successful targeting, the therapeutically active materials would be 
distributed to a specific region in the body and thus side effects and 
toxic reactions could be decreased significantly [3]. To improve the 
bio-distribution of the target nanoparticles, nanoparticles loaded with 
active drugs which are carried to receptor cells by selectively using 
water-soluble QDs. The proper delivery of these nanoparticles would 
greatly benefit new therapeutic strategies, such as gene therapy of 
diseased cells, where it is essential to direct treatment to specific site in 
the body [4-6].

SSTRs are members of the G protein-coupled receptors (GPCRs) 
superfamily [7,8]. SSTRs are one class of receptors that could be 
targeted using NPs. These receptors are found either exposed on the 
surface of the cell or within the cell [9-11]. These cells are target cells 
for that ligand while cells which do not have such a receptor cannot be 
influenced directly by that ligand [12]. There are five different SSTRs 
subtypes (SSTR1-5) since they are expressed at various sites in the body 
and distributed in different organs [13-15]. SSTRs are also expressed on 
blood cells [16-22]. They bind with the natural SST and its analogues 
with low nanomolar affinity [8,23,24].

Quantum dots (QDs) are little semiconductor particles, just a 
few nanometers in estimate, so little that their optical and electronic 
properties vary from those of bigger particles. They are a focal topic in 
nanotechnology. Numerous kinds of a quantum dot will radiate light 
of particular frequencies if power or light is connected to them, and 
these frequencies can be accurately tuned by changing the dots' size, 
[25] shape and material, offering ascend to numerous applications. In 
the dialect of materials science, nanoscale semiconductor materials 
firmly keep either electrons or electron gaps. QDs are additionally here 
and there alluded to as counterfeit particles, a term that stresses that a 
quantum speck is a solitary question with bound, discrete electronic 
states, similar to the case with normally happening iotas or molecules.
[26]. QDs display properties that are middle between those of mass 
semiconductors and those of discrete particles. Their optoelectronic 
properties change as a component of both size and shape [27]. Larger 
QDs (sweep of 5- 6 nm, for instance) radiate longer wavelengths 
bringing about emanation hues, for example, orange or red. Littler 
QDs (range of 2-3 nm, for instance) produce shorter wavelengths 

bringing about hues like blue and green, in spite of the fact that the 
particular hues and sizes shift contingent upon the correct organization 
of the QD. As a result of their very tunable properties, QDs are of 
wide intrigue. Potential applications incorporate transistors, sunlight 
based cells, LEDs, diode lasers and second-consonant age, quantum 
figuring, and restorative imaging [28]. Additionally, their little size 
takes into consideration QDs to be suspended in an answer which 
prompts conceivable uses in inkjet printing and turn coating [29]. 
These handling strategies result in more affordable and less tedious 
techniques for semiconductor creation.

Nowadays, different sorts of organic dyes are utilized. In any case, 
as innovation progresses, more noteworthy adaptability in these dyes 
is sought [30]. To this field, quantum specks have immediately filled in 
the part, being observed to be better than customary natural dyes on a 
few checks, a standout amongst the most quickly evident being shine 
(inferable from the high elimination coefficient joined with a similar 
quantum respect fluorescent dyes [31] and in addition their steadiness 
(permitting significantly less photo bleaching).It has been assessed that 
quantum spots are 20 times brighter and 100 times more steady than 
conventional fluorescent reporters [30]. Moreover, the unpredictable 
flickering of QDs is a minor drawback. Also, there have been groups 
which have created QDs which are essentially non blinking and 
demonstrated their utility in single molecule tracking experiments [32].

The utilization of QDs for exceptionally delicate cell imaging has seen 
major advances [33]. The enhanced photo stability of QDs, for instance, 
permits the obtaining of numerous back to back central plane pictures 
that can be remade into a high-determination three-dimensional image 
[34]. Another application that exploits the uncommon photo stability 
of quantum dot tests is the constant following of atoms and cells over 
expanded times of time [35]. Antibodies, streptavidin [36], peptides 
[37], DNA [38], nucleic corrosive aptamers [39], or little particle 
ligands can be utilized to target QDs to particular proteins on cells. 
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Analysts could watch QDs in lymph nodes of mice for more than 4 
months [40].

SST has numerous functions in mammals; it can be as regulators for 
secretion of growth hormones [41]. Furthermore, it is widely circulated 
throughout the central nervous system and peripheral tissues there 
playing many roles in the central nervous system [42,43]. Moreover, SST 
prevents the regulation of many endogenous cell functions, comprising 
the modulation of neurotransmission, motility, cell proliferation and 
cell secretion [44,45]. The limited stability of SST and the existence of 
many functional groups make the interaction with other compounds 
is difficult [46]. To conjugate SST to QDs, SST was thiolated then 
conjugated to sulfo-SMCC-QDs as a step that can easy the activation of 
QDs with SST. The conjugation started with the thiolation of SST using 
Traut’s reagent. On the other hand, the QDs that carry PEG-amine 
chains were activated by sulfo-SMCC dissolved in an activation buffer. 
The sulfo-SMCC activated QDs were conjugated to the thiolated-SST 
to form SST-QDs. The cellular uptake of QDs-SST was studied using 
MCF7 cells. MCF7 cells were incubated with QDs-SST for 1 hour. The 
number of QDs per cell was determined by ICP-OES.

Materials and Methods

Materials

Somatostatin acetate (SST) was kindly supplied from CuraMED 
Pharma GmbH (Karlsruhe, Germany). Hydrogen tetrachloroaurate 
tri-hydrate, Traut´s reagent (2-iminothiolane hydrochloride), Ellman’s 
reagent (5,5'-dithiobis-(2-nitrobenzoic acid)). QDs carrying PEG-
amine were purchased from Invitrogen (Darmstadt, Germany). The 
ultrafiltration units had a 100-kDa cut-off membrane was purchased 
from Amicon Ultra-4 Millipore (Billerica, MA). Dulbecco`s phosphate 
buffered saline (pH 7.4), Dulbecco's Modified Eagle Medium, and 
Leibovitz′s L-15 were purchased from Invitrogen, (paisley, UK).

The purified water used for all experiment was obtained using 
a Milli-Q water purification system from Millipore (Schwalbach, 
Garmany). All glassware were thoroughly washed with freshly prepared 
aqua regia (HCl: HNO3, 3:1), extensively rinsed with Millipore water 
several times and oven-dried at 50oC for 2-3 hours before use.

Conjugation of somatostatin to quantum dot nanoparticles

The conjugation of SST to QDs started with the thiolation of SST 
using Traut’s reagent. On the other hand, the QDs were subsequently 
activated by a 500-fold molar excess of sulfo-SMCC dissolved in an 
activation buffer to yield a final volume of 250 μL. The activated QDs 
sulfo-SMCC was conjugated to the thiolated-SST to form SST-QDs 
(Figure 1). The obtained bio-conjugate was purified by centrifugation 
using an ultrafiltration tube (Amicon Ultra-4, 100K MWCO; GE 
Healthcare) [47].

Characterization of somatostatin coated quantum dots

The zeta potential was determined using a Malvern Zetasizer Nano 
(Malvern Instruments GmbH, Herrenberg, Germany). Fluorescence 
emission spectra of QDs and QDs-SST were recorded in order to 
determine the shift obtained after conjugation of SST to QDs. The 
fluorescence of QDs was recorded using a Perkin-Elmer LS 55 (Perkin-
Elmer, LAS, Germany GmbH, Rodgau juegesheim).

Cellular uptake

To study the cellular uptake and displacement of َQDs-SST, 
mammary gland, breast; derived from metastatic site: pleural effusion 

(human, MCF7) were seeded in a 24-well plate at a density of 100000 
cells/well in a complete growth medium, and allowed to grow for 2 
days, with medium changed once. Then the medium was removed, 
cells were washed with DPBS and incubated with QDs, QDs-SST, and 
QDs-SST + 100 µM free SST for 1-hour at 37 oC. After incubation, the 
QDs-SST were removed, and the cells were washed with DPBS and 
trypsinized. The cells were centrifuged at 300 × g at 4oC, washed twice 
with cold PBS and used for flow cytometry (FACS) analysis. Cells were 
analyzed on a FACS Calibur (BD Biosciences, San Jose, CA). QDs were 
excited at 488 nm and emission was measured using a 655 nm band-
pass filter. Data was analysed using win MDI 2.9 software. 5000 cells 
were gated from the population of the whole cells and the fluorescence 
was plotted in a histogram. Each data point represents the mean of 
three measurements (± SEM). The QDs concentration was determined 
by fluorimetric measurement in 96-well plate on a LS-55 fluorescence 
spectrometer (Perkin Elmer, Waltham, MA, USA) using an excitation 
and emission wavelength of 488 and 655 nm, respectively [48,49].

Furthermore, to study the cellular uptake of QDs-SST using 
inductively coupled plasma optical spectroscopy, ICP-OES, MCF7 
cells were incubated with unmodified QDs (as control nanoparticles) 
and QDs-SST for 1 hour in RPMI 1640 medium containing serum. 
The number of QDs per cell was determined by ICP-OES. The initial 
concentration of QDs in the culture medium was 20nM for unmodified 
QDs and QDs-SST.

Results and Discussion
SST-coated-QDs were successfully synthesized and showed a stable 

colloidal solution without any visible coalescence. Fluorescence emission 
was observed when all QDs were excited at 488 nm. Collectively, these 
results indicate that QDs coated with SST have no significantly different 
fluorescence properties compared to the unmodified QDs. Even though 
their QDs were chemically modified with SST, they still possess a 
significant fluorescence. This indicates that the decoration with SST did 
not affect the fluorescence of QDs. However, the blue shift observed 
could be due to the conjugation of QDs with SST. The zeta potential of 
colloidal QDs-SST is often used as an indicator of dispersion stability. It 
was found that, QDs alone had zeta potential of -37.92 ± 0.16 mV. After 
conjugation with SST, the zeta potential showed reversal to positive 
values (+23.3 ± 0.23 mV) (Figure 2). The large value of negative zeta 
potential is the reason of dispersion stability. Furthermore, the inversion 
of zeta potential is an indication for the binding of the peptide to QDs.
Large zeta potentials predict a more stable dispersion [50].

QDs-SST was produced to offer a stable colloidal solution and 
exhibited no visible coalescence. Nevertheless, the QDs-PEG-amine 
was chemically modified with SST, they still have a significant 
fluorescence. This reveals that the coating of QDs with SST did not 
affect the fluorescence of QDs-PEG-amine. The surface charge also 
works a fundamental role in the stability of the QDs, and the grade of 
zeta potential approves the stability of the colloidal system [51]. The 
extreme zeta potentials afford a more stable dispersion. Moreover, the 
DLS showed a reversal of zeta potential to positive charges. The extreme 
zeta potential suggests the distribution stability and the inversion of the 
zeta potential [50].

Cellular uptake

QDs-SST exhibited highly specific binding when incubated with 
MCF7 cells. FACS showed no significant uptake of unmodified QDs 
to MCF7 cells, while QDs-SST was bound with the cells with strong 
fluorescence. This finding supports that the particles were successfully 
delivered into the target cells. Further experiments showed that the 

http://products.invitrogen.com/ivgn/product/11415056?ICID=search-product
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internalization binding was reduced in the presence of free agonist SST 
10 µM. The fluorescence of QDs-SST was significantly decreased when 
displaced with free SST (Figure 3).

In order to compare the binding of QDs-SST with other formulae. 
The fluorescence intensities of QDs-SST to MCF7 cells match the 
results expected for this active targeting. The results showed the high 
bind of QDs-SST with these cells was due to higher expression of 
mRNA of SSTR2. The cytotoxicity was tested for these nanoparticles 
also the IC 50 values were 67 nM for MCF7 cells when they bind to 
QDs-SST. The results showed no toxicity for QDs on different cell lines 
reported in this study (Figure 3).

The higher binding of QDs-SST to cells due the expression of 
higher SSTR2 especially the expression of mRNA of SSTR2 with MCF7 
cells as reported previously [52,53]. Our data showed that the QDs-SST 
displayed a high exclusive binding to the SSTR2 which can be displaced 
from their receptor using high concentrations of SST as agonist 
occupier. ICP-OES showed also higher binding of QDs-SST to MCF7 
cells. Moreover, these results showed that the internalization binding 
was reduced in the presence of free SST (10 µM), due to blocking of 
receptors. These kinds of receptor-interactions are considered as 
receptor mediated endocytosis which is crucial for diagnosing, treating, 
and identifying the cancer cells (Figure 4).

+

Reagents and conditions; 1. Traut´s reagent (1.5 eq.) pH 8; 2. Sulfo-SMCC (1000 eq.) pH 8 for 1 hr; 3. 
Incubation in borate buffer pH 8 for 1hr ; 4. Purification (Sephadex G-25).
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Figure 1: Bioconjugation of SST to QDs. The reaction mixture was purified, by running through an equilibrated sephadex G-25 mini-column. Then, QDs activated 
with sulfo SMCC. The activated QDs-Sulfo-SMCC was conjugated to the thiolated-SST to form SST-QDs. The obtained bio-conjugate was purified using 
sephadex G-25.
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Conclusions
Thiolation was necessary for the conjugation of SST to QDs. In 

addition, higher amounts of QDs-SST particles internalized per cell 
in MCF7 cell lines compared to unmodified QDs and QDs-SST in 
the presence of high concentration of free SST. Such internalization 
depends on the surface properties of the cells not on the size of particles 
as shown when the receptors were blocked by incorporation of the 
antagonist. Finally, the proof of principle has been addressed and we 
will be focusing our research in the future in the delivery of these novel 
QDs coated with SST to various tumour cells.
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