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Nowadays, herbal medicines have been widely used in health care 
and disease treatment and the share of herbal medicinal products in 
pharmaceutical market is increasing rapidly in many countries. One 
of the main resources of active pharmaceutical ingredients of herbal 
medicines is secondary metabolites, many of which are structurally 
complex and difficult to synthesize chemically. Thus, increasing the yield 
of some secondary metabolites through bioengineering approaches is 
highly desired. However, it is difficult to achieve at present because 
the genetic background of most medicinal plants is not clear and the 
genes involved in the biosynthesis of secondary metabolites are largely 
unknown. Intensive studies on functional genomics in medicinal 
plants seem to be a key for solving this problem. 

The ever-growing research tools for plant functional genomics 
include large-scale sequencing of expression sequence tags (ESTs) 
or genomic DNA sequences, DNA chips, two-dimensional 
polyacrylamide gel electrophoresis (PAGE), mutagenesis-based 
methods, and so on [1]. EST sequencing is a rapid and relatively 
economic tool for transcriptome analysis. Through EST sequencing and 
subsequent computational analysis, some key enzyme genes involved 
in the biosynthesis of secondary metabolites have been identified and 
characterized in various medicinal plants, such as Glycyrrhiza uralensis 
[2], American ginseng [3], Ginkgo biloba [4], Digitalis purpurea [5], 
Panax notoginseng [6], Euphorbia fischeriana [7], Bupleurum chinense 
[8], Camptotheca acuminate [9], P. ginseng [10], Salvia miltiorrhiza 
[11,12], and Taxus cuspidate [13]. Whole-genome sequencing is the 
other effective tool for functional genomics. Whole-genome sequence 
analysis, combined with gene expression pattern analysis and systemic 
evolution analysis, has been successfully used to reveal forty genes 
involved in terpenoid biosynthesis in S. miltiorrhiza at a genome-wide 
level [14]. cDNA microarray, a hybridization-based technique, is an 
alternative way for analysis of plant genes. This method has been used 
for the identification of tanshinone biosynthesis-related genes in S. 
miltiorrhiza [15].

Genome-wide mutagenesis is a direct route to determine the 
function of a gene product in situ [16]. It is usually induced by 
radiation, chemicals, T-DNA or transposons, of which T-DNA and 
transposons are more attractive and have been used more often than 
radiation and chemicals in recent studies. This is because T-DNA and 
transposons can generate mutants tagged with known fragments. It 
makes the insertion sites in the genome be trackable, which is very 
convenient for gene identification. Transposons have been successfully 
used to generate mutant populations for various plant species, such as 
Arabidopsis and rice, and have been proved to be an effective tool for 
gene function verification [17]. However, the ‘jumping’ frequency of 
transposons is significantly varied among plant species, which results 
in the inability to control transposon activity in some plant species 
[18]. Additional disadvantages of transposon tagging include that 
the operative vectors of transposon tagging are limited to some plant 
species and the insertion of transposons in plant genome is not very 
stable. Therefore, T-DNA-mediated mutagenesis appears to be more 
suitable for generation of large-scale mutant populations of medicinal 
plants.

In the past years, the genome-wide T-DNA tagging strategy has 
been successfully employed in constructing mutant populations 
for various plant species, such as Arabidopsis, rice, maize, sorghum, 
soybean, tomato, et cetera, and has been proved to be powerful in 
elucidating gene functions through the generation of knockout 
mutants, activation-tagged transgenics, and promoter or enhancer trap 
lines [19,20]. Various web-based databases for T-DNA-tagged mutants 
have been constructed for two model plants, Arabidopsis and rice. The 
phenotypes of mutants and T-DNA insertion sites in the genome are 
available on the web. It has greatly accelerated systematic analysis of 
gene functions in Arabidopsis and rice. Thus, T-DNA tagging must 
be a very useful tool for the analysis of gene functions in medicinal 
plants. However, there is only a few reports on T-DNA-tagged mutants 
of medicinal plants and the mutant populations generated are small 
[21]. It could be due to the lack of whole-genome information and 
the unavailability of T-DNA-mediated transformation systems for 
most medicinal plant species. Other reasons probably include the 
costliness, time-consumingness and laboriousness in the generation 
of saturated mutant population and subsequent mutant screening and 
gene identification.

Although it is a herculean task, application of the T-DNA tagging 
technique in the studies on medicinal plant functional genomics is 
very attractive. This is particularly true with more and more genomes 
of medicinal plants decoded using the next-generation sequencing 
techniques and highly efficient transformation systems established for 
medicinal plants [21,22]. In addition, the development of some new 
methods, such as the rolling circle amplification-mediated hairpin 
RNA (RMHR) library construction technique, will greatly improve 
the efficiency of T-DNA tagging [23]. Thus, application of the T-DNA 
tagging technique in medicinal plant functional genomics is also 
practicable. Since one can expect tremendous outcomes once large-
scale mutant populations are generated for medicinal plants and 
valuable information of gene functions are obtained, it is reasonable to 
believe that T-DNA tagging is a promising tool for functional genomics 
in medicinal plants.
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