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Abstract
The unique pattern of pitcher plants inner surface and its super-antiwetting property with high adhesion is reported. 

The surface is replicated by using a two-step approach with PDMS as the replicating material. The replica showed 
similar surface morphology and surface properties.
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Introduction
The wetting property of a surface depends on both the surface 

morphology and the chemical composition of materials on the surface. 
Most super-antiwetting surfaces are made of hydrophobic materials, 
although some hydrophilic materials can also form super-antiwetting 
surfaces [1,2]. These surfaces have textures on the scale of 100 nm to 
10 micrometers. In nature, two types of super-antiwetting surfaces 
exist on biological creatures [3-5]: One with low adhesion and another 
with high adhesion. Lotus leaves and water striders’ legs are examples 
of super-antiwetting surfaces with low adhesion [6,7]; rose petals and 
gecko’s toes are examples of the other. On a super-antiwetting surface 
with low adhesion, also commonly called an ultrahydrophobic surface, 
water droplets bead up and freely roll off the surface at very small tilting 
angle [8-10]. On super-antiwetting surfaces with high adhesion, water 
droplets do not slide with a large tilted angle or are firmly pinned to the 
surface even when the surface is placed upside down [11-13].

In both cases, contact angle measurement of water droplets is 
commonly used to characterize surface wettability. Typically, a super-
antiwetting (ultrahydrophobic) surface has a water contact angle 
greater than 150° [14].

Method
It is generally recognized that the adhesive force of super-

antiwetting surface is related to the surface roughness and morphology 
[15-17]: rough surface morphology results in low adhesion and 
superhydrophobicity, while smoother surfaces are adhesively 
hydrophobic. In general, the one with low adhesion has nanometer 
scale projection [18,19] or rough porous textures [20,21] on the 
microstructures on the surface, lowering the surface tension. As one 
example, lotus leaves, which have an ultrahydrophobic surface with low 
adhesion, have a hierarchical textured surface with microislands coated 
with nanoparticles. Typically, in super-antiwetting surfaces with high 
adhesion, well-aligned nanoparticle size array or papillae are present. 
Several different mechanisms of the high adhesion have been proposed, 
but the cause of the high adhesion remains controversial [22-24].

Here, we report that the surface of pitcher plants have super-
antiwetting properties with high adhesion due to its unique surface 
morphology. We also report the surface property of replicas of surfaces 
of a pitcher plant. Inspired by practical applications of the super-
antiwetting properties of surfaces such as self-cleaning, antifouling, 
friction reduction [25,26], or gecko toes’ sticky properties, artificial 
replica of these surfaces have been developed by using a variety of 
approaches [27,28]. These replicated surfaces have various surface 
morphologies and various chemical compositions [29,30]. Our replica of 
the inner surface of pitcher plants showed similar high adhesion character.

Results and Discussions
The pitcher plant we used in this experiment was the North 

American Pitcher plant that belongs to the genus Sarracenia (Figure 1 
left). The inner epidermis of the top section of the pocket-like digestive 
gland of the pitcher plant (the blue square in Figure 1 left) was collected 
for microscopic images (Figure 1 right) and for the replication. The 
inner surface has a fish scale-like morphology’, pointing downward 
into the pocket of the pitcher plant (Figure 1 right). The pitcher plant’s 
purpose of these spikes might be to prevent the escape of the caught 
bugs in the pocket.

The contact angle measurements (taken by an OCA15 contact 
angle meter, Future Digital Scientific, Long Island) showed a contact 
angle of 145 ± 5°, with the surface holding a water droplet tightly 
without dropping even when the plate is held upside down, suggesting 
the super-antiwetting property with high adhesion to the surface 

Figure 1: Left: Picture of a North American pitcher plant leaf. Right: SEM 
images of the inner epidermis of the top section of the pocket-like digestive 
gland of the pitcher plant.
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PDMS solidifies at room temperature for 24 hours, the PDMS layer is 
peeled off, resulting in a complementary topographic surface structure 
of the original template surface (negative template, Figure 3b and 3c). 
If off-peeling is difficult, soaking the leaf and the negative template 
in water for a couple of hours helps with removing the leaf without 
damaging the negative template. Although the curing time can be 
shortened to 30 min at 80°C, longer time at room temperature was 
adopted in our experiment to avoid any deformation of the surface of 
the inner epidermis of the pitcher plant. The negative template was then 
coated with a monolayer of nonstick trimethylchlorosilane (TMCS) by 
thermal evaporation in a vacuum, or simply by leaving both the negative 
template and TMCS solvent next to each other in a desiccator (Figure 
3d, called silanization step). Then on PDMS nonstick template, another 
replication of PDMS is performed. At this step, a mixture of PDMS 
liquid and the curing agent at 5:1 was used because this mixture was 
less viscous so it could penetrate better into the holes of the negative 
template so the surface feature are better replicated than the mixture 
at the 10:1 ratio. After separation, the newly formed PDMS film is a 
replica of the textured surface pattern of the pitcher plant (positive 
replica, Figure 3e). The negative template can be reused to replicate the 
surface of the pitcher plant.

The fabrication process allows us to prepare an effective replica. 
PDMS was successfully used to transfer the surface morphology 
of the pitcher plant in a simple two-step approach. Figure 3e shows 
that the morphology on the pitcher plant was extremely close to full 
replication from the PDMS. The process can be used to mass replicate 
the morphologies of the pitcher surface. The tip morphology was 
observed on the positive replica as well, however, the tips of replica 
were connected to the surface, probably because the tips of spikes were 
forced onto the surface by the viscous PDMS when casting PDMS. 
Further improvement of the PDMS recipe and the process seems 
necessary to replicate the morphology more precisely. The contact 
angle of the positive replica is 140 ± 8°, which is about the same as 
those on the pitcher plant surface (Figure 4). As comparison, the 
contact angle of a flat PDMS surface is about 105°. Furthermore, the 
water droplets pinned on the surface would not fall off, even when held 
upside down (Figure 4). The mimicked PDMS shows similar micro- 
and nanostructures to those on pitcher plant surface and the same 
super-antiwetting abilities with high adhesion behavior. The replication 
can be repeated and all the replica showed similar morphology and 
the water contact angle, indicating the fabrication process was highly 
reproducible and controllable.

Conclusions
In summary, this work demonstrated the unique pattern of pitcher 

plants and their super-antiwetting properties with high adhesion. The 
study introduced another super-antiwetting surface morphology with 
high adhesion that may help with understanding this phenomenon. 

(Figure 2). This contact angle was caused by the morphology of inner 
surface of the pitcher plant’s pocket. Each scale’s spike is approximately 
30 micrometers in length. The tips of the spike are in the nanometer-
scale.

Next, we demonstrated the capability to replicate the surface 
morphology by implementing a template method. Replication from 
a natural template might be the most effective and simple way to 
reproduce complex surface morphology in nature. While a variety of 
methods have been developed to mimic super-antiwetting surfaces 
of plant leaves, a facile approach is to create a template to replicate 
the surficial morphology [31]. One of the most popular materials for 
replicating surface structures is Polydimethylsiloxanes (PDMS) [32], 
which is an industrially important soft material that have been used 
for sealants, adhesives, damping fluids, cosmetics, et al. [33] Asides 
from its characteristically viscoelastic property, PDMS is also noted 
for being hydrophobic. PDMS has been used for surface geometry 
replication by casting a viscous PDMS liquid for solidification without 
any sophisticated treatment of the surface. A resolution of around 20 
nm has previously been reached by using this approach [34], which 
validated the effectiveness of this method for replicating surface 
morphologies.

In this method, a mixture of liquid PDMS and its curing agent (ratio 
of 10:1, Figure 3a) is casted onto the inner surface of the pitcher plant 
in order to make a negative template of the structures of the textured 
surface. This mixture is a viscous and transparent liquid. When the 

    

Figure 2: Image and Contact angle of a water droplet on a pitcher plant leaf.
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Figure 3: a) PDMS used in this experiments was obtained from Galco 
Industrial Electronics Inc. (Sylgard-184 silicone elastomer kit). b) A picture of 
the a negative template prepared from the solification of PDMS on the pitcher’s 
plant surface. c) SEM image of the negative template. d) Both the negative 
template and TMCS solvent were left next to each other in a desiccator in order 
to evaporate a nonstick monolayer of TMCS onto the negative template. e) 
SEM image of a replicated PDMS sample of the pitcher plant.

 

Figure 4: Image and Contact angle of a water droplet on a PDMS replica of 
pitcher plant leaf.
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We also demonstrate the formation of a replication of the surface by 
using a two-step approach by using PDMS as the template material. 
The method is effective to transfer the surface morphology of the 
pitcher plant onto a PDMS surface. We are also interested in whether 
this replica can be used for bug catching just as the pitcher plant does, 
and further work will reported it in the future.
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