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ABSTRACT

It is almost impossible to solve the modern fluid flow problems without the use of Computational Fluid Dynamics
(CFD). In petroleum industry, flow simulations assist engineers to develop the most efficient well design and it is
essential to understand the multiphase flow details. However, despite the high accuracy, performing the numerical
simulation fall short in providing the required results in timely manner. This article presents two case studies of
Smart Proxy Models (SPM) utilizing artificial intelligence (Al) and Machine Learning (ML) techniques to appraise
the behavior of the chaotic system and predict the dynamic features including pressure, velocity and the evolution
of phase fraction within the process at each time-step at a much lower run time. Proposed cases concentrate on 2-D
dam-break and 3-D fluidized bed problems, using OpenFOAM and MFiX, CFD software applications, respectively.

This paper focuses on building and improving the artificial neural network (ANN) models characterized by feed-
forward back propagation method and Levenberg-Marquardt algorithm (LMA). Each case study contains multiple
scenarios to gradually enhance the model capabilities to forecast the dynamic parameters. Results for both cases
indicate that 8-10 hours of computational time for running CFD simulation, reduces to a few minutes when is
done by developed Al-based models along with less than 10% error for entire process.

Keywords: Computational fluid dynamic; Fluid mechanic; Multiphase flow; Dynamic flow; Artificial neural
network

Abbrevations: p: Density; p: Dynamic Viscosity; g: Gravitational force; y: Second Viscosity; U: Velocity; P: Pressure;
T: Diffusion Coefficient Over Density; y: Phase Fraction; CFD: Computational Fluid Dynamics; SPM: Smart
Proxy Model; Al: Artificial Intelligence; ANN: Artificial Neural Network; LMA: LevenbergMarquardt Algorithm;
RMSE: Root Mean Square Error

ANN models, which are based on Al and ML, accurately replicate
the functionalities of the system honoring dynamic nature of

INTRODUCTION

Fluid mixtures such as oil and gas components, combined with
solid particles as well as water, are produced constantly from the
reservoirs. Multiphase production complexity, CO, capturing,
COz injection process, separation of mixture components,
transportation by pipes and fluid flow in porous media are some of
the multiphase flow example in petroleum scope [1,2]. Therefore,
it is important in petroleum engineering to understand multiphase
flow behaviors and how the details can be predicted [3].

Numerical-based multiphase flow simulation is a time-consuming
process because of considering the simultaneous equations of
many physical parameters. Therefore, proxy models help engineers
to overcome this shortage by simplifying the physics and neglecting
the complexities of the numerical models. On the other hand,

the problem in higher speed compared to numerical simulation.
Another significant advantage of this technique is prediction of
the fluid properties for unconventional reservoirs which requires
special recovery operations due to the complexity and unique
conditions [4].

In this article, two case studies have been conducted to evaluate
the contribution of Al in CFD problems. Both proposed problems
are two phase dynamic phenomena and the numerical simulations
require sophisticated mathematical modeling. First case is gas-
liquid interaction and is called “breaking of a dam”, while second
case is gas-solid combination and is called “fluidized bed”.

Many studies have been conducted in unconventional reservoirs’
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topic from pore scale up to reservoir scales to improve the
understanding of flow behavior and properties in complex
unconventional formations [5]. One of the first use of Al in
petroleum science goes back to 90’s, which authors used ANN
to design a model to predict the formation permeability [6]. Also
Mohaghegh and Amery [7], calculated well performance index after
hydraulic fracturing utilizing ANN. New correlation of estimating
the crude oil viscosity has been achieved by using ANN model
[8]. Sun and Durlofski [9] used principal component analysis
considering data-spaced inversion process to forecast reservoir
production. A combination of statistical and ML techniques were
used by Satija et al. [10] to assess the reservoir performance without
conducting history matching with optimum processing time.
Classifying the wells with and without the liquid loading is another
application of using unsupervised ML techniques in reservoir
engineering [11].

MATERIALS AND METHODS

Generally, there are two different methods for multiphase flow
numerical solution. The first method is Eulerian-Lagrangian and
the second is Eulerian - Eulerian approach. Eulerian solution is
based on the locations during the process by using Navier-Stokes
equation and Lagrangian solution is based on particles movement
during the process by considering newton’s equation. Eulerian-
Lagrangian method is the combination of both Eulerian and
Lagrangian solutions, it means that continuous phase is considered
for Eulerian and dispersed phase considered for Lagrangian
solution, but in Eulerian-Eulerian approach for both phases,
Eulerian solution will be used [12,13]. Table 1 shows different
approaches with respect to the scale of the problem.

In order to solve CFD problems, two governing equations need to
be solved, momentum and mass conservation.

For momentum conservation, Navier-Stokes equation is present
as (Note that the fluid is considered as Newtonian incompressible
fluid):

%’%-ﬁ-V(pUU)-V.uVU-ng-Vp 1

Where (0 pU)/0t is change of velocity with time, V.(pUU) is
convective term, V.uVU is velocity diffusion term, pg is body force
term, as external forces that act on the fluid (gravity), Vp is pressure
term, fluid flows in the direction of largest change in pressure.

In addition, for mass conservation, continuity equation is present
as:

dp
L4 V.(pU)=0 2)
o (pU)

Where U is velocity, p is density, p is pressure, | is dynamic

viscosity, and g is gravitational force. By involving volume of
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fluid technique and defining new term called y which is phase
fraction in one cell, the density as is mentioned before would be

Pu=P 0,7, Pa=10+(17) 9, 6
For viscosity
’um:’ulfyl_F’LLQﬁ)/Q : NHl:')/Nl"}_(l"Y)pMQ (4)

Where, p_ is mixture density, p, is water density, p, is Air density,
W is mixture viscosity, [, is water viscosity and i, is Air viscosity.

Y could be any value between one and zero and this symbol represent
the phase fraction in each computational cell. y=1 means that, the
cell is completely occupied by water and if it is filled with air, y is
zero. Generally, phase fraction equation is:

_ fluid volume

)

cell volume

Another equation is transport equation (for property @) with
following general form:

0
%—FV.@@U)—V.(TV@):S@ )

ag(p) represents the rate of change of property @ with time,
t

V.(p@U) is advection of property @ by the fluid flow (net rate of
flow-convection),also term V.(t V) represents the rate of change
due to diffusion of property @. (T is diffusion coefficient divided
by the fluid density) and last term (S_¢) is the rate of change due
to other source.

Transport equation with following form is used to calculate the
relative volume fraction in each cell:

ik

—+ V. (7U)=0

o ("0) W)
By adding artificial compression term into this equation, necessary
compression of the surface will be calculated:

% + V. (VU)+V.(~/ (1-7) u,,):o ®

Artificial neural network

Nowadays ANNs are being extensively used in many areas and
different application from engineering to medical science and etc.
[14]. A feedforward backpropagation method of training moves
forward and computes the related values then this computed value
is compared to the main value and based on the error calculation,
it goes back in order to reduce the errors by modifying the weights.
Levenberg-Marquardt algorithm (LMA) was selected for training
process, LMA is known as the fastest algorithm for medium size

Table 1: Multiphase flow modeling approaches [14].

Name Gas Phase Solid Phase
Discrete Bubble Model Lagrangian Eulerian
Two Fluid Model Eulerian Eulerian
Unresolved Discrete Particle Eulerian Lagrangian
Model
Resolved Discrete Particle Model Eulerian Lagrangian
Molecular Dynamics Lagrangian Lagrangian
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Coupling Scale
Drag Closure for bubbles 10 m
Gas-Solid drag closure Im
Gas-particle drag closure 0.1m
Boundary condition at particle surface 0.0l m
Elastic collisions at particle surface <0.001 m
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of data and operates as an iterative procedure based on numeric
minimization [15,16].

In order to evaluate the accuracy of ANN model, the cell-based
error was defined as the absolute value of subtraction of CFD and
NN. In addition, RMSE is used to assess the overall error.

oo | (D ~CFD,,,,,.)  (Smartprosy,,, = CFD, )| ©)
(CFDM,W - CFD,_",MH) (CFD, — CFDM,W“)
1 n 2
RMSE = ;Z(ym ~ Yy ) (10)
j=1

The majority of data-set which includes 70% of the data, was used
for learning in training part, 15% of the data-set was utilized for
validation and 15% of the data-set was considered for testing part.

Deployment

There are two types of deployment; “Non-cascading” and
“Cascading”. First one refers to the type of deployment where the
CFD data-set is fed to ANN model to predict the next time-step
(Figure 1). In contrast, in “cascading” deployment, the input to
the ANN is provided from predicted value in previous time-step.
In other words, only one time-step from CFD software is required
to initiate the deployment process and develop the results for rest
of the time-steps (Figure 2). In this study, the steps to reach the
best non-cascading model are presented. Providing a perfect non-
cascading model with maximum precision and minimum error
leads to acceptable cascading result [17,18].

To accomplish the objective of these two case studies, three
different approaches are designated as following:

Approach 1: Using single time-step for training

Approach 2: Using multiple time-steps from significant dynamic
moments for training

Approach 3: Involving time-steps with highest error in training
system

Case Study 1

This case consists of a square tank with a column of water located
behind a membrane on the left side (Figure 3a). At the beginning
(t=0), the membrane drops and the column of liquid collapses.
During the falling, the liquid hits the right wall of the tank and
generates a complicated two-phase flow structure [19]. Each grid
has a specific index, which indicates the location of the grid with
distance from the walls.

Dependence of the parameters to each other and degree of the
dependency plays a significant role in input determination. On the
other hand, in order to build a comprehensive model, all potential
assumptions that might be effective on physics of the problem
should be considered. Four favorable variables are selected for
this case including phase fraction, x-direction velocity, y-direction
velocity and pressure.

24 inputs have been demarcated for training purposes, including:
four variables for the focal cell, four variables for the distance of
the focal cell from boundaries and four variables are considered

J Pet Environ Biotechnol, Vol. 11 Iss. 1 No: 401
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Figure 1: Non-cascading deployment workflow.

Figure 2: Cascading deployment workflow.

Figure 3: (a) Geometry and initial condition case study 1, (b) Neighbors of
the focal cell in 2-D model.

for each neighbor cell (four cells surrounding the focal cell (Figure
3b) and the network is trained for each variable, separately. More
details about data generating, timestep selection and training
process are described in [20].

Three types of grid sizes are assessed in this case; “medium”,
“fine” and “very fine” containing 50, 200 and 400 grids in X and
Y axes, respectively. Once the simulations were conducted, it was
confirmed that the “fine” grid classification is the most appropriate
mesh size for the problem’s condition and the two other models
were denied due to the low resolution and creating high number
of records.

First approach: building the model using single time-step
for training

In first step for building the ANN model, one time-step’s data-set
(2300 as the input and 2301 as the output of ANN) from CFD result
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was selected to evaluate the capability of the model. Deployment
result indicated that the model can’t be trained properly with one
time-step’s data-set in entire process and after a couple of time-
steps’ successful prediction, the error increases.

For each variable, one ANN model is required including phase
fraction, pressure, x-direction velocity and y-direction velocity
and the correspond result is presented in the Figure 4 (the phase
fraction result is presented as a sample for each approach The left,
middle and right figures are representing CFD, ANN and error
distribution, respectively. In error distribution figure, the red
points represent at least 10% error.

In order to compare the predicted result by ANN model and
visualize the performance, three plots were generated. The first plot

OPEN aACCESS Freely available online

on the left side is generated from CFD simulator, the middle one
represents the prediction data performed by ANN and the right
plot is the error percentage between CFD and ANN model.

Second approach: building the model using multiple time-
steps from significant dynamic moments for training

In this approach, unlike the previous method, 16 time-steps data-
set were selected from the most significant dynamic moments for
training process. The involved time-steps with their respective
real time are presented in Figure 5. One model was built for
each parameter and the phase fraction result is shown in Figure
6. The results indicated that except for some time-steps the error
distribution in entire process is less than 10%.

Figure 4: Phase fraction at time-step 2305 (five time-steps further).

Figure 5: Significant dynamic moments used in the second approach with the real time.

J Pet Environ Biotechnol, Vol. 11 Iss. 1 No: 401
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Third approach: involving time-steps with highest error in
training system

From previous section, using 16 time-steps for building the model, it
was concluded that involving significant movements in the training
process was a great enhancement to attain a comprehensive model.
Furthermore, it was found out in some time-steps, particularly for
pressure and velocity, more errors have been occurred. In order
to improve the accuracy of each model, more time-steps from the
moments with highest error were added to the training data-set.
This consideration improved the non-cascading model significantly.
The phase fraction result of this approach is presented in Figure 7.

The number of records for first, second and third approach was
40,000, 640,000, 1,200,000, respectively. The average RMSE of
the entire process for second and third approach is presented in
Figure 8. The maximum error for all parameters was less than 10%
and it was occurred in time-step 520 for phase fraction.

Case Study 2

Case study 2 concentrates on a fluidized bed problem to show the
capabilities of this method when it comes to three-dimensional gas-
solid interactions. Figure 9a shows the geometry of this problem
which is a rectangular fluidized bed with a square cross section.
One-sixth of the fluidized bed is filled with sand which is initially
at rest. The sand particles are perfect spheres with the density of
2000 kg/m’. The initial volume fraction of gas is 0.42. The inlet
air velocity is set to 0.6 m/s which is uniformly distributed in the
upward direction. The air discharges into atmospheric pressure up
on top of the bed.

As air is injected into the bed, at first, large gas pockets form that
cause the sand particles to move upward as a slug. In matter of few
seconds, the gas pockets break up, leading to the breakup of sand
slugs, which shower back down. At this time, air enters the bed

OPEN aACCESS Freely available online

and forms bubbles, which moves up through the sand bed, leading
to the fluidization of the sand particles. The output attributes of
the numerical simulator used in this case study are; gas volume
fraction, gas pressure, solid pressure, velocity of gas in x direction,
velocity of gas in y direction, velocity of gas in z direction, velocity
of solid in x direction, velocity of solid in y direction and velocity
of solid in z direction [21].

This problem is three dimensional and each cell is in contact with
28 neighbor cells; 6 of them have the surface contact with the focal
cell which have high correlation with the focal cell. The dynamic
property of these 6 cells were included in the model preparation
process in order to fully capture the spatial relationship between all
dynamic features. Figure 9b shows the focal cell and its 6 neighbor
cells.

It is also crucial to teach ANN where the cell is located and how far
it is from the boundaries to learn the spatial correlation between
different parameters. Also, like case study 1, wall has a significant
impact on the flow pattern and its location should be included in
the ANN training. Six different distances to the wall confinements
(top, bottom, east, west, north, and south) are considered to define
the exact location of each cell and parameters associated with each

cell [22].

First approach: building the model using single time-step
for training

ANN can have either one output at the same time or multiple
outputs. Having multiple outputs simultaneously increases the
training time and the network has to fit multiple outputs with the
same weights, so the network has less flexibility to learn from data
but sometimes it gives a better result especially when there is a
correlation between the outputs.

Time-step 100 was used as input alone with time-step 101 as the

Figure 6: Phase fraction, the maximum error in whole process time-step at 2660.

Figure 7: Phase fraction, the maximum error in whole process.

J Pet Environ Biotechnol, Vol. 11 Iss. 1 No: 401
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Figure 8: Phase fraction RMSE distribution over time for second and third
approach.

Figure 9: (a) Geometry and initial condition case study 2, (b) Neighbors of
the focal cell in 3-D model.

Figure 10: Gas x-velocity of time-step 102 for layer one (z=1).

output. The ANN was trained successfully and the time-step 102
was predicted, the time-step that ANN has never seen before. The
results of the ANN model versus CFD for gas velocity are shown
in the next figures. As it is shown in Figure 10, ANN model is
able to replicate the MFIX simulation results that show gas velocity
(x-direction) distribution at timestep 102 for layer one. The

J Pet Environ Biotechnol, Vol. 11 Iss. 1 No: 401
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maximum prediction error occurred occasionally at some points
with the value less than 21% while we see an error near to zero in
the rest of the domain.

Similar results have been obtained for gas velocity y-direction
where the maximum prediction error occurred occasionally with

the value less than 25% (Figure 11).

As an alternative, it is decided to have three components of gas
velocity as the outputs of the ANN at the same time, because
of existing the potential correlation among the gas velocity
components.

As another advantage of this approach, it should be stated that
having multiple outputs at the same time would reduce the number
of neural networks models. There are total of nine different ANN
needed for deployment, this number could be reduced to three if
each network has three outputs simultaneously.

Figure 12 shows the results of ANN model and comparison with
CFD simulation results. Fairly good results were obtained (Only
the lower section of the fluidized bed is shown in the figure for
better resolution). Gas velocity in the y-direction contains the
highest error, which is less than 20% at some single points, but

Figure 11: Gas y-velocity of time-step 102 for layer one (z=1).

Figure 12: Gas y-velocity of time-step 102 for layer one (z=1).
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the rest of the domain have negligible errors. This new approach
enhanced the results by 5% when it compares to the single output
approach (Figure 11).

Using multiple output at the same time improved the results,
however, it needed more preprocessing and processing time.
Therefore, for the following approaches, single output will be
presented.

Second approach: building the model using multiple time-
steps from significant dynamic moments for training

The technique outline so far uses a single time-step for input and
output of the ANN. However, the gas-solid flow undergoes a regime
change, from a slugging flow at the beginning to a fluidized regime
as time goes by. The ANN trained with the data from when the flow
field is slugging does not have the predictive capability of capturing
the flow dynamics, when the bed is fully fluidized. In order to train
an ANN model, containing wider range of applicability, the input
and output of the ANN must be trained on data from multiple
time-steps, capturing many changes taking place in the flow.

Figure 13 shows three different time-steps involved in the training
process. These timesteps were selected from the significant
dynamic moments of the problem, when the flow is slugging at first
(time-step of 200), then transitioning (time-step 1000) and finally
fluidizing stage (time-step 4000). One more parameter was added
to the training data-set that shows the actual elapsed time for each
time-step. Figure 13 shows the gas volume fraction contours in the
CFD simulations at time-steps 200 (0.2 sec elapsed time), 1000 (1
sec elapsed time) and 4000 (4 sec elapsed time).

Time-steps 200-202, 1000-1002, and 4000-4002 have been used
for the training. The deployment process is then conducted with
the trained ANN by inputting time-step 200 all the way to time-
step 4000 (non-cascading approach). The results are presented in
terms of RMSE of gas volume fraction in Figure 14. Clearly in the
time-steps that we included training data; the amount of error is
minimum (Blue line).

Third approach: building the model using multiple time-
step and single Output

Similar to the case study 1, the time-steps with larger amount of
errors in second approach to the need for additional ANN training
at those time-steps (potentially other dynamic behaviors are taking
place in the bed, requiring additional training). The contour plot
of gas volume fraction at time-step 500, where the RMSE is high
(blue line) is shown in Figure 15. It is clear that at around this time-
step, flow is transitioning from the initial plug flow behavior to a
more bubbling flow. This change in the flow regime is not properly
captured, since the input data to ANN at the training stage did not
include any data from the time-steps, when transitioning is taking
place.

Figures 14 and 15 show a decrease in RMSE, when data from
time-steps where RMSE peeks in second approach were added
to the training data-set. Although the RMSE is very low in non-
cascading approach for all the times-steps, using the same ANN
model in cascading mode will be accompanied by a large error.
This study showed that the ANN model could be a viable tool for
predicting gas-solid flow behavior in a fluidized bed. However, to
make the trained ANN more general, the cascading deployment

J Pet Environ Biotechnol, Vol. 11 Iss. 1 No: 401
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Figure 13: Significant dynamic moments used in the second approach.

Figure 14: Gas fraction RMSE distribution over time for second and third
approach.

Figure 15: Gas fraction of time-step 500 for layer one (z=1).

needs further research and more parameters should be considered
in order to minimize the error propagation over the time.

DISCUSSION AND CONCLUSION

In this paper, two case studies, “Dam-break” and “Fluidized bed”,
have been conducted to demonstrate the successful implementation
of Artificial Intelligence and Machine Learning in multiphase flow
field of study. The main objective of this research was forecasting
the behavior of the fluid flow parameters with acceptable precision
in comparison with CFD simulator result. Moreover, proposed
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approach will significantly reduce the computational cost of
optimization process compared to CFD simulator since this process
requires multiple runs. Results indicated that the ANN model was
able to predict the behavior of the fluid with satisfactory results. In
addition, processing time has been altered from hours to minutes

scale.
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