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Abstract
Tumor Differentiation Factor (TDF) is a pituitary protein, which is secreted into the blood stream and targets breast 

and prostate. The end effect of TDF on these tissues is differentiation of breast and prostate cells. However, it is not 
yet clear how TDF induces cell differentiation. Studies in our laboratory determined that the potential TDF receptor 
candidates are: HSPA8, a member of the 70 kDa heat shock protein family and HSP90 protein. Our previous studies 
also indicated that TDF may have an inducible receptor, composed of both HSP70 and HSP90, and that TDF signaling 
depends on the interaction of these proteins. Here we provide additional insights about the proposed interaction 
between HSP70 and HSP90 and about the HSP90-TDF interaction. 
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Introduction 
Tumor differentiation factor (TDF) is a recently identified 

protein, produced in the brain. Work in our lab identified TDF in 
the brain, specifically in the pituitary, but also in other regions. TDF 
immunostaining specifically co-localized with markers specific for 
neurons, but not with markers specific to astrocytes [1].

The TDF protein produced by the pituitary is likely secreted in the 
blood stream and targets breast and prostate tissue [2]. In vitro work 
using proteomics suggested that the TDF receptor candidates are 
members of the heat shock family, specifically heat shock protein 70 
(HSP70) and heat shock protein 90 (HSP90) [3-5]. 

Proteomics allows identification and characterization of proteins 
in large scale [6-10] and TDF receptor candidates (and TDF ligand) 
were identified by affinity chromatography followed by mass 
spectrometry [3-5,11]. Our earlier studies also indicated that TDF 
may have an inducible receptor, composed of HSP70 and HSP90 [3-
5]. Furthermore, we also suggested that TDF signaling depends on the 
interaction of HSP70 and HSP90 proteins with TDF [12]. However, 
the function of TDF is still not understood and many of these studies 
still need additional theoretical and experimental confirmation. In 
addition, the TDF crystal structure has not been established, thus 
making us rely mostly on structural biology-based work [13]. Therefore, 
a better understanding of TDF requires additional studies. To further 
understand the function of TDF, we employed structural biology to 
investigate the interaction of HSP70, HSP90 and TDF. Here we provide 
additional insights about the possible interaction between TDF and its 
potential HSP70 and HSP90 receptors.

Methods
For protein interaction and docking experiments, we have taken 

the homology model of 3C7NB, a member of the HSP70 as a ligand 
protein [4] and HSP90-beta as receptor protein. The 3C7NB is the 
open, weakly ADP bound form [14]. For HSP90, we have selected the 
homology model based on gi20149594 and template crystal structure 
2IOQ Chain B [15]. This model receptor protein is developed using 
Swiss model [16,17]. 2IOQ is an open form of HSP90. 

Protein-protein docking was carried out using GRAMM-X 
Docking Web Server v.1.2.0 [18,19] and verified by Patch dock and 
Fire dock servers [20-23]. Descriptions of these docking experiments 
are described elsewhere [3-5]. For the TDF-HSP90 interaction, we used 
the same homology model of HSP90 (2IOQ.pdb) as receptor protein 
[15], but used the model TDF structure as a ligand protein [11,12]. This 

model TDF protein was developed using I-Tasser server [24,25]. In our 
previous experiments, we have used TDF-P1 as a ligand [12]. 

To further substantiate we have performed another set of experiment 
using HSP90 model receptor based on template structure 2CG9B.PDB 
(Chain B) [26]. That part could be found in the supplemental materials 
(Figures S1-S6).

Results and Discussion
HSP70-HSP90 interaction

HSP70 proteins may interact with the proteins from the HSP90 
family. Both proteins were also experimentally determined that 
interact with TDF. To investigate the details on TDF-HSP70-HSP90 
interaction, we conducted docking experiments involving HSP70 and 
HSP90 proteins, and TDF-HSP90 proteins. HSP90 is composed of 
N Terminal Domain (NTD), Middle Domain (MD) and C Terminal 
Domain (CTD). HSP90 forms a dimer at the C-terminal domain 
[27]. Figure 1A describes the structure of the model receptor protein 
(HSP90, based on 2IOQ.pdb) colored from N-terminal to C-terminal. 
Three receptor cavities for potential ligand-binding are also labeled by 
numbers in this figure. Figure 1B displayed the hydrophobic surface of 
the model receptor protein. From Figure 1B it is clear that the ligand 
binding pockets are somewhat hydrophobic in nature. Figure 1C 
described the structural aspects of model ligand protein. The structure 
of the model ligand protein is based on HSP70 (HSPA8, 3C7NB.pdb) 
(Figure 1C). The structure of the model HSP70 is composed of three 
parts N-terminal nucleotide binding domain (NBD), substrate binding 
domain (SBD), and a linker that connects the SBD and NBD.

Figures 2 and 3 display the two tentatively identified docking sites 
(cavity 3 and cavity 1 of Figure 1A) of HSP70 ligand on the HSP90 
model receptor model. Interfacial residues are also displayed in Figures 
2C-2D and 3C-3D. These docking sites are identified using GRAMM-X 
docking server. One additional ligand protein binding pocket (cavity 
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2 of Figure 1A) as displayed in Figure 4 is identified using Patch dock 
and Fire dock server. Figure 4C and 4D are the residues of the receptor 
and ligand protein at the interfacial region. In Figure 2, the NBD of 
the ligand protein is docked onto the receptor cavity 3. In Figure 3, 
the SBD of the ligand protein is docked onto the receptor cavity 1. In 
Figure 4, the SBD is docked onto the receptor protein cavity 2. From 
the above computational study we can see that the SBD of HSP70 is 
most frequently bound to HSP90. An additional feature is observed 
while identifying the tentative docking site using Patch dock and Fire 
dock. In this particular instance, the tentative docking site of the ligand 
protein is traversed between the receptor protein cavity 2 and 3 of Figure 
1A. When docking by GRAMM-X, the ligand protein has a higher 
tendency to dock in cavity 3 than cavity 1 of model receptor based on 
2IOQ. In case of patch dock and fire dock web-server however, the 
ligand protein is mostly docked at cavity 2 and 3 than cavity 1. All these 

figures are made using Accelrys Discovery Studio 3.5 [28]. Overall, we 
have found three tentative docking sites for interaction between HSP70 
and HSP90 and that From Figure 1B, we can assume that these pockets 
are somewhat hydrophobic in nature.

Figure 5 displays the predicted protein-protein interaction network 
for HSP70 kDa protein 8 (HSPA8). These analyses are performed 
using the The Biological General Repository for Interaction Datasets 
(BioGRID) [29,30] and the graphic views are generated using the web 
based BioGRID graphical network viewer [http://thebiogrid.org/]. 
The numbers of total interactions are 414 (Figure 5A). If “interactor 
interactions” are included then the total numbers of interactions for 
HSPA8 are 7160 (Figure 5B). 

HSP90-TDF interaction
We also investigated the interaction between TDF ligand protein 

[11,12] and HSP90 receptor based on template structure 2IOQ.
pdb [15]. In this case, when docking by GRAMM-X, the ligand TDF 
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Figure 1: Representative 3D models for receptor and ligand protein. A. Model 
receptor protein based on 2IOQ.pdb colored from N (blue) to C-terminal (red). 
The receptor cavities are labeled by numbers. B. Surface depiction of receptor 
protein based on hydrophobicity. C. Structure of ligand protein based on 
3C7NB. PDB (colored in green) 
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Figure 2: Tentative ligand protein binding pockets on a model receptor 
protein based on 2IOQ.pdb. A. Tentative docking site identified by GRAMM-X.  
Receptor protein is colored in pink and the ligand protein is colored in green. B. 
Closer view. C-D. Residues at the receptor-ligand interface. These residues are 
displayed in ball and stick mode.  
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Figure 3: A second ligand protein binding pocket (in addition to that shown 
in Figure 2) a model receptor based on 2IOQ.pdb. A. Tentative docking site 
identified by GRAMM-X.  Receptor protein is colored in pink and the ligand 
protein is colored in green. B. Closer view. C-D. Residues at the receptor-ligand 
interface. These residues are displayed in ball and stick mode.  
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Figure 4: Another ligand binding pocket. A. Another tentative docking site as 
identified by patch dock and fire dock server. Receptor protein is colored in 
pink and the ligand protein is colored in green. B. Closer view. C-D. Residues 
at the receptor-ligand interface. These interfacial residues are displayed in ball 
and stick mode. 

http://thebiogrid.org/
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protein has a higher tendency to dock in cavity 3 than cavity 1 of model 
receptor. And in this case the TDF protein does not seem to dock 
strongly at cavity 2 of the model receptor. These docking site using 
GRAMM-X webserver are displayed in Figure 6A. Interfacial residues 
of TDF structure are displayed in Figures 6B. In case of patch dock and 
fire dock web-server the ligand TDF protein however mostly docked 
at cavity 3 than cavity 1 and 2. Figures 6A and 6B were made using 
Accelrys Discovery Studio 3.5 [28]. 

The protein-protein interaction network (physical and genetic) 
for HSP90 protein is shown in Figure 7. The numbers of total 
predicted interactions are 906 (Figure 7A). These calculations are 
based on interspecies interactions and self-interaction. If “interactor 
interactions” are included (Figure 7B) then the total numbers of 
interactions are 8456 [29,30]. 

Conclusions
Overall, the current data suggest that TDF may indeed interact, in 

addition to HSP70, with HSP90. As we demonstrated previously, TDF 
may activate a pathway that is specific to breast and prostate cancer cells 
but not sensitive to other cancer or normal fibroblast or fibroblast-like 
cells. Our previous report also suggested that TDF-R may be a multi-
subunit inducible receptor, composed of HSP70 and HSP90, and that 
TDF signaling depends on the interaction of these proteins. Thus TDF 
interacts with its receptors and induces cell differentiation through a 
unique, non-steroid mechanism [3-5,12].

From the above structural study we can speculate that TDF protein 
has a higher tendency to bind to the MD of HSP90 receptor protein. 
The client proteins and co-chaperones are supposed to bind in the 
MD of HSP90 [31-35]. The NTD of HSP90 contains a lid structure 
that is closed in ATP bound conformation but remains open in the 
ADP bound and apo forms [36]. In the case of HSP70, we find that the 
ligand typically binds to the SBD of HSP70, which is consistent with 
earlier reported findings [37,38]. Nevertheless, some binding of the 
ligand protein is found in the linker region of HSP70, and this type 
of binding has also been reported in the literature [39,40]. For HSP70, 
the α helical lid in the SBD plays a role in substrate binding. Here, the 
substrate is encompassed by the lid in a cavity comprised of β sheets. 
Structural reordering of helical lid is possible before and after substrate 
binding [41]. Ongoing experimental investigations in our laboratory 
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Figure 5: Prediction of interactions between HSP70 (Heat shock 70kDa protein 
8; HSPA8) and HSP90. Other heat shock proteins including hsp90 are in close 
up. B. Graphic view “interactor interactions” of Heat shock 70kDa protein 8 
(HSPA8). These figures are generated using the web-based graphical network 
viewer BioGRID 3.2.102.
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Figure 6: Tentative TDF protein binding pockets on a model HSP90 receptor 
based on 2IOQ.PDB. A. Tentative docking sites identified by GRAMM-X.  
Receptor protein is colored in green and the ligand TDF protein is colored in 
yellow space filling mode. B. Residues at the receptor-ligand interface. These 
interfacial residues of ligand protein are displayed in yellow stick mode.  
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Figure 7: A. Predicted interaction network of HSP90. B. Graphic view of 
interaction network if “interactor interactions” are included. These figures are 
generated using the web-based graphical network viewer BioGRID 3.2.102.
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will hopefully shed some light in the current interactions identified by 
structural biology. 

Although HSP90 system is largely studied, there are many un-
answered questions [42-45]. To our knowledge, complex formation 
between Hsp90 and Hsp70 are mediated through co-chaperones such 
as Hop/p60 or Sti1 in yeast [46-48]; no strong experimental evidence 
or crystal structure is available at this time to verify direct interactions 
of Hsp70’s with hsp90’s. The present work proposes the idea of a 
complex formation between HSP70 and HSP90 (as a TDF receptor), 
and a recent study on multiple myeloma also suggests the possibility of 
such direct interaction between Hsp70 and Hsp90 [49]. Nevertheless, 
since no experimental evidence is available to verify this interaction, 
this proposal remains an open topic for further investigation.
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