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Metallic Glasses (MGs) are potential candidate for a myriad of 
structural and engineering applications [1-3] because of their unique 
properties due in part of the absence of crystalline lattice which is found 
in conventional metals. However, the amorphous structure in MGs are 
still not very well understood and recent studies have highlighted the 
importance of understanding the atomic-level structure of MGs and its 
correlation with the mechanical behaviors [4].

Unlike in crystalline alloys where the lattice and crystal defects 
could be easily identified, in MGs, there are a variety of cluster types 
[5] resulting in heterogeneity in the structure. For example, some
clusters such as Kasper polyhedra could be the dominant structure,
while other clusters are relatively unstable and irregular. Egami et al.
[13,14] proposed the concept of atomic level stresses to explain the
origins of these structural fluctuations. The size of each atom varies
with its atomic level stress and leads to changes in the effective size ratio 
between the solute and the solvent atoms [13]. Since the effective size
ratio determines the corresponding coordination number, therefore
atoms with different stresses will possess different packing schemes.
Furthermore, strain energy will be induced by the atomic level stresses
[15], hence it is reasonable to conclude that atoms with lowest energy
are stable and tend to form ordered clusters, whereas atoms with
highest energy are likely to form structural defects.

The micro structural features of MGs are of fundamental 
importance for explaining their macroscopic properties, such as 
their strength, elasticity and deformation behavior. Although the 
mechanical performances of crystalline materials could be explained 
from the coexistence of lattice periodicity and crystal defects such as 
dislocations, the local topology varies from site to site in MGs, resulting 

One interesting attribute of MGs is their ultrahigh strength–
exceeding 1 GPa in most cases [16,17]. The typical yield strain of 
MGs is about 2%, which is far beyond that of crystalline alloys. While 
the strength of crystalline materials is determined by the sliding of 
dislocations, the strength of MG sis related to the strength of metallic 
bonds due to the absence of dislocations [4,16]. A well relaxed MG 
has a large fraction of unlike (solute-to-solvent) bonds which exhibit 
higher stability and bonding strength [4,5]. In other words, the solute 
atoms are likely to be surrounded by solvent atoms, leading to an 
improvement in strength [4].
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At microscopic level, there are regions with low and high local 
stiffness in MGs [18]. This mechanical heterogeneity originates 
from the structural fluctuations in MGs, and has been confirmed by 
computer simulations [19-22]. Typically, Kasper polyhedra tend to 
percolate with each other, forming the structural backbone to sustain 
the entire matrix [5,22]. Consequently, regions with more Kasper 

resistance to external loads. Regions with less Kasper polyhedra are 
relatively unstable and are likely to undergo inelastic deformation. It 
is found that the shear resistance of MGs is enhanced with more rigid 
structural units. For instance, computer simulations on Cu-Zr MG 
confirmed that full icosahedra exhibits lower atomic strain energy and 
yields higher stiffness, which means that they are energetically more 
stable [15,23]. Furthermore, the icosahedra clusters tend to connect 

In summary, the atomic structure of MGs has a broad distribution 
of networks that gives rise to their unique mechanical properties. 
Although the mechanical behaviors of MGs have been intensively 
analyzed through experiments, understanding of the underlying 
mechanisms of their mechanical performances is still inadequate. 

To understand the structure of MGs, binary systems such as Ni-P 
and Cu-Zr have been extensively studied [5-7]. Microscopically, the 
Short-Range Order (SRO) of MGs is characterized by the presence of 
similar solute-centered clusters [5,8]. The effective solute-to-solvent 
radius ratio plays an important role in determining the SRO in different 
systems [9-11]. The dominant SRO, or the structural order, could 
exhibit in the form of Kasper polyhedra with a large fraction of fivefold 
bonds [5]. However, any distortion to the fivefold bond will promote 
the formation of defective sites, which are energetically unstable 
[4,5]. Furthermore, the absence of  direct solute-solute contact was 
confirmed by studying the partial Radial Distribution Functions 
(RDFs) [5]. At a larger scale, these similar clusters are efficiently 
packed and connected, forming the Medium-Range Order (MRO) 
in 3D space [5,8,12].

The yielding of MGs has been attributed to the percolation of Shear 
Transformation Zones (STZs) that undergo inelastic deformation and 
are characterized by the structural defects in MGs [24-26]. Typically, 
the STZs are dispersed in the matrix, which is supported by the 
structural backbone (networks of Kasper polyhedra). By applying 
a shear force onto the system, these STZs will experience inelastic 
deformations and gradually percolate with one another [27]. As long 
as the interconnection of these STZs does not exceed a critical length 
scale, they are reversible upon unloading. However, if the shear stress is 
sufficiently large, a variety of STZs will then connect with one another, 
giving rise to the destruction of the elastic backbone and irreversible 
plastic strain. At room temperature, shear deformation is concentrated 
in several localized shear bands, which is a catastrophic failure mode 
of MGs. Molecular Dynamics (MD) simulations have been applied 
to study the yielding and shear banding process of MGs [28,29]. For 
example, in Cu-Zr MG, regions with more unstable polyhedra are 
likely to undergo inelastic deformations, while those with the more 
stable full icosahedra will only be elastically deformed. Furthermore, it 
is also reported that the full icosahedra in STZ should be transformed 
into other unstable clusters during the yielding process.

in distinct mechanical behaviors at each site [4].

polyhedra tend to form interpenetrating networks and exhibit higher 

with one another, constituting the MRO in the system [12].
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Henceforth, the atomic structure and structure-property relationship 
of MGs need further investigations to unravel and improve our 
understanding of the glassy state.
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