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Abstract

Based on linear superposition rules and fast discrete Fourier transformation, a semi-analytical solution is 
developed for calculating the elastic fields induced by dislocation loops in an isotropic thin film-substrate system. 
The elastic field problem of thin film-substrate system is decomposed into two sub-problems: bulk stress due to a 
dislocation loop in an infinite space, and correction stress induced by free surface and interface of the film-substrate 
system. Correction elastic field is linearly superimposed onto bulk elastic field to produce continuous displacement 
and traction stress across the interface plane of the perfectly-bounded film-substrate system. Firstly, calculation 
examples of dislocation loops in Cu-Nb film-substrate system are performed to demonstrate the calculation efficiency 
of the developed semi-analytical approach. Then, elastic fields of dislocation loops within Cu film and Nb substrate of 
the Cu-Nb film-substrate system are analyzed. Finally, effects of film thickness, loop positions are investigated, and it 
is found that the elastic fields of dislocation loop are influenced remarkably by these two factors. 

Keywords: Elasticity; CuNb; Dislocation loop; Film-substrate;
Isotropy

Introduction
Film-substrate structures and systems composed of thin film of 

finite thickness and substrate of infinite thickness are widely used 
in micro-chips, smart electronics, micro-sensors and manipulators, 
protective coatings, etc. During the industrial fabrication process and 
service life-time of film-substrate structures and systems, dislocation 
clusters will be generated and will result in the microstructure evolution 
of the film-substrate system. The performance, reliability and integrity 
of thin film-substrates are closely related to the material properties of 
the film and substrate, in particular, the crystal orientation (or texture 
for polycrystalline material), the dislocation density and distribution. 
Study of the collective dynamic behaviors of dislocations embedded 
in thin film-substrate system are of great interest to researchers and 
engineers, which are of critical importance for understanding the 
microstructure evolution, plastic deformation process of thin film-
substrate systems. 

Solutions to the elasticity field induced by dislocations within 
film-substrate system are important, because the elasticity solution 
provides a direct means of determining the Peach-Koehler force 
acting on dislocations, which is of direct relevance in understanding 
the microstructure evolution and mechanical behaviors of these film-
substrate systems. In order to simulate the dynamic evolution process 
of dislocation and dislocation loops, accurate method are needed 
to calculate the stresses due to dislocations and dislocation loops in 
a heterogeneous thin film-substrate system. Making use of mirror 
dislocation concept and potential theory, Head [1,2] analyzed the 
changes in the stress field of a straight screw/edge dislocation caused by 
differences in the shear modulus on either side of bimetallic medium. 
Moreover, making use of image dislocation concepts, the equilibrium 
positions of a group of dislocations within bimaterial and film-substrate 
system are studied. It was found that when dislocations are located on 
the side with lower modulus and are situated on the slip plane which 
is perpendicular to the boundary of bimaterial system, dislocations are 
forced towards the boundary by an applied stress but repelled from the 
boundary by the change in modulus [3]. Making use of the solution of 
an edge dislocation in half-plane and that of the reversed traction force 

prescribed on the interface plane, Weeks et al. [4] presented an exact 
analysis for the elastic field and the Peach-Kohler force due to an edge 
dislocation within the substrate medium of film-substrate system. By 
using Fourier exponential transform, Lee and Dundurs [5] investigated 
the elastic field of an edge dislocation situated in the surface layer 
of the film-substrate system, and the behavior of edge dislocation is 
discussed through analyzing the Peach-Kochler force acting on these 
dislocations. By extending the classical mirror dislocation solutions 
for the interface plane between two semi-infinite elastically isotropic 
media, the image problem for a screw dislocation in the thin films of 
multilayered film-substrate system has been solved analytically [6], 
and the equilibrium position of a single dislocation in thin films was 
determined as a function of stress in the films. Kelly et al. [7] studied 
the stress field induced by an edge dislocation of arbitrary orientation 
in both the surface layer and substrate medium of the layer-substrate 
system, and the solution can be employed for deriving the solution 
of crack problems, together with the Peach-Koehler force. Savage [8] 
studied the solution for the displacement field induced by an edge 
dislocation in a layered half-space, and four elementary solutions were 
considered: the dislocation is either in the half-space or the layer, and 
the Burgers vector is either parallel or perpendicular to the interface 
plane. It was found that the surface displacement field produced by 
the edge dislocation in the layered half-space is very similar to that 
produced by an edge dislocation at a different depth in a uniform 
half-space. Moreover, a low-modulus (high-modulus) layer causes the 
equivalent dislocation in the half-space to appear shallower (deeper) 
than the actual dislocation in the layered half-space. Wu and Weatherly 
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[9] studied the equilibrium position of misfit dislocations in epitaxial 
grown systems where the thickness of the epitaxial film is several orders 
of magnitude smaller than the thickness of the substrate. When the 
film is elastically stiffer than the substrate, the core of the dislocation 
is predicted to lie at some distance from the interface in the softer 
substrate. On the other hand, when the film is softer than the substrate, 
the core of the dislocation is always predicted to lie close to the 
interface [9]. The continuous dislocation image dislocation method is 
used to derive elastic solutions for an edge dislocation in an anisotropic 
film-substrate system, and it was found that elastic anisotropy and 
material mismatch play an important role in determining the image 
forces and the stress components due to an edge dislocation located 
in film-substrate systems [10]. The stress and displacement fields due 
to an edge dislocation in a linearly elastic isotropic film-substrate were 
studied based on image dislocations methods, and it was shown that 
the film thickness and dislocation position have a significant influence 
on the image force acting on the dislocation, and the film thickness 
variation due to an accumulation of dislocations may degrade the 
performance of optical films [11]. Recently, anisotropic elastic stress 
fields caused by a dislocation in GexSi1-x epitaxial layer on Si substrate 
are investigated by Wang [12], and effects of layer thickness, the 
dislocation position and the crystallographic orientation on the stresses 
of anisotropic film-substrate system were investigated extensively. It 
was revealed that the layer thickness and dislocation position strongly 
affects the stresses, while the crystallographic orientation play a very 
weak role in determining the elastic stress fields [12]. However, theses 
analytical solutions are mainly limited to straight dislocation lines 
parallel to the interface planes, which is invalid for curved dislocations 
and dislocation loops within film-substrate systems. Making use of 
potential theory and complete elliptic integrals, the elastic fields of a 
circular planar dislocation loop in an isotropic two-phase material, 
and the interaction forces between dislocation loop and the second 
phase were studied analytically, it was found that Peach-Koehler forces 
acting locally on the loop always tend to distort it [13,14]. Besides these 
analytical solutions, Weinberger et al. [15] and Wu et al. [16] developed 
semi-analytical solutions to calculate the image stress of approaching 
dislocations and dislocation loops within half space and free standing 
thin film. It is found that image force has a much stronger effect on 1/2 
(111) dislocation loop in anisotropic (111) thin Fe foil, compared to the 
Voigt equivalent isotropy simulation results. Moreover, for complex 
dislocation configurations and boundary conditions, the image stress 
due to free surfaces and interfaces can now, owing to computing power, 
be computed by finite element method [16]. 

The objective of this paper is to develop an efficient and accurate 
method to calculate the stress due to dislocation loops in an isotropic 
heterogeneous thin film-substrate system, which is composed of a thin 
film of finite thickness and a substrate of infinite thickness. Based on 
linear superposition rules and fast discrete Fourier transformation, 
the problem is decomposed into two sub-problems: the stresses due 
to a dislocation loop in an infinite space and the correction stresses 
induced by the upper free surface of film and the film-substrate 
interface. Firstly, calculation examples of dislocation loops in Cu-
Nb film-substrate system are performed to verify the semi-analytical 
approach; Then, elastic fields of dislocation loops within Cu film and 
Nb substrate of the Cu-Nb film-substrate system are analyzed; Finally, 
effects of film thickness, dislocation loop positions on the elastic field 
of is investigated, and it is found that film thickness, dislocation loop 
positions has a remarkable impact on the elastic fields of dislocation 
loops within film-substrate system. 

Stress Fields Induced by Dislocation Loop in Perfect 
Bonding Film-Substrate System
Statement of problem

As shown in Figure 1, perfect bonding isotropic film-substrate system 
is decomposed into a thin film (A) of finite thickness 2h and a substrate 
(B) of infinite thickness. The elastic properties of the film and substrate 
medium are assumed to be (λf, µf, vf) and (λs, µs, vs), respectively. Two sets of 
local Cartesian coordinates are employed for describing the film-substrate 
system: local Cartesian coordinate (x+,y+,z+) for the upper thin film A, and 
local Cartesian coordinate (x−,y−,z−) for the lower substrate half space B, 
where (x+, y+) and (x−,y−) are parallel to the interface plane and simplified 
as (x,y). The origin of the local Cartesian coordinate for the upper thin 
film A is located in the middle of the thin film, and the origin of the 
local Cartesian coordinate for the lower substrate B is located on the 
interface plane. Accordingly, −h ≤ z+≤ h is valid for the upper thin film 
A, and z−≤ 0 is valid for the lower substrate B. Dislocation loop L1 is 
located in the thin film medium A, and dislocation loop L2 is located in 
the substrate medium B. 

The free surface and interface of the perfect bonding film-substrate 
system should satisfy the following requirements: 

(a) Free traction stress should be satisfied on the top free surface of 
the film-substrate system. 

f
i3 z h

0
+ =+

σ =                   (1)

(b) Elastic displacement and traction stress should be continuous 
across the interface planes of the film-substrate system. 

f s
i3 i3z h z 0+ −=− =

σ = σ                  (2)

and 
f s
i iz h z 0

u u
+ −=− =

=                  (3)

Where ‘f’ and ‘s’ stand for the film and substrate, and superscripts 
‘+’ and ‘−’ distinguish the local Cartesian coordinates of the film and 
substrate, respectively. 

Solution for Perfect Bonding Film-Substrate System
In this subsection, a semi-analytical solution is proposed to solve 

the elastic fields due to dislocation loops within thin film or substrate of 
perfect bonding film-substrate system. Elastic field of perfect bonding 
film-substrate system can be decomposed into two sub-problems: bulk 
stress due to a dislocation loop in an infinite space, and correction stress 
induced by the free surface and interface of the film-substrate system. 

As shown in Figure 2a, perfect bonding film-substrate system is 

Figure 1: Cartesian coordinates of a film-substrate system: (a) coordinate  
(x+,y+,z+)  for the thin film; (b) coordinate (x−,y−,z−) for the lower half space. 
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decomposed into thin film A containing dislocation loops L1 and 
substrate B containing dislocation loop L2. Bulk traction elastic field 

{ }i3 A
∞σ  and { }i3 B

∞σ  on the top free surface and interface plane can 

be calculated out. 

As shown in Figure 2b, correction traction stress { }correction
i3 Aσ and 

{ }correction
i3 Bσ are linearly superimposed onto the bulk elastic fields. 

As shown in Figure 2c, after linear superposition of bulk stress and 
correction stress, displacement and traction stress continuity across the 
interface plane are satisfied. 

Elastic Fields of Dislocation Loops within Infinite Iso-
tropic Medium

Bulk displacement of dislocation loops can be calculated with 
Volterra’s formula, and written as surface integration over dislocation 
area [17,18]: 

( ) ( )m i ijkl km,l j
S

u x b C G x x' dS∞ = −∫                 (4)

Where S is the dislocation surface, a cap with its boundary formed 
by dislocation loop perimeter. Cijkl are the elastic constants, and Gkm,1 is 
the first order derivative of Green’s function. 

For an isotropic material, following relation exists: 

( )
( )

( )
m ,ppj l ,ppl jm j ,ppm

i ijkl km,l
j ,ppm i ,mij

b R b R b R
1b C G R

8 2 b R b R
2

 + δ −
 

=   λ +µπµ + −  λ + µ  

µ µ

µ
         (5)

Where R = x−x′ is the vector from dislocation position x′ to the 
calculated position x, λ, is Lamé’s first parameter of isotropic material, 
and µ is shear modulus of isotropic material, δij is the Kronecker delta 
operator. 

Bulk stress induced by dislocation loops in a homogenous medium 
can be calculated with Mura’s formula [18]. Firstly, bulk displacement 
gradient can be written as: 

( ) ( ) ' '
i, j jnh pqmn ip,q m hu x C G x x' b dx= ε −∫∞                 (6)

where the integration is performed along dislocation loop perimeter. 
For an isotropic material, it appears that: 

( ) ( )

( )
( ) ( ) ( )

( )( )( )

' ' '
ni m m im n n mn i i

3

pqmn ip,q ' ' '
m m n n i i

5

x x x x x x
1 2

1 RC G x x
8 1 x x x x x x

3
R

 δ − + δ − + δ −
 − ν
 −

− =  π − ν − − − 
+ 

 

′    (7)

Where R = |X-X′| is the distance from the dislocation position x′ to 
the calculated position x in the space.

Considering the displacement-strain differential relation, bulk 
stress of dislocation segment can be generated with isotropic Hooke’s 
law:

ij kk ij ij ijkl ij. 2. C .∞σ = λ ε δ + µε = ε                  (8)

Then, bulk stress induced by a circular dislocation loop can be 
produced through linear integration along dislocation loop perimeter 
for a round. 

Correction Stress of Lower Substrate Medium
In the absence of body forces, the stress equilibrium equation of the 

lower substrate medium B can be written in terms of the displacement 
( )iu x−  as: 

( )s s s
i, jj j, jiu u 0− −µ + λ +µ =                  (9)

Where λs = 2 µsvs/(1-2vs), µs and vs are the shear modulus and 
Poisson’s ratio for the lower substrate medium B. 

Similar to the solutions for the image stress of half space developed 
by Weinberger et. al [15], an arbitrary correction elastic field written 
in the form of Fourier series with unknown Fourier coefficients is 
employed for solving the correction elastic field of the lower substrate 
medium B. The following correction displacement solution to Eq. (9) is 
written as sum over different Fourier modes: 

( ) ( )

( ) ( )

( )

x yz

x y

x yz

x y

x yz

x y

ik x ik yk z
x 1 y 2 x 3

k k

ik x ik yk z
y 1 x 2 y 3

k k

ik x ik yk zs s
x 1 z 3

s sk k

u k z K k K ik K e e

v k z K k K ik K e e

ë 3ì
w ik z i K k K e e

ë ì

−

−

−

+ ++− − − − −

+ ++− − − − −

+ ++− − − −

= + − + ⋅ ⋅

= + + + ⋅ ⋅

  +
= − + + ⋅ ⋅   +











   

∑∑

∑∑

∑∑

     (10)

where 2 2
z x yk k k= +  and ( )1 2 3K ,K ,K− − −  are complex constants. The 

solution is periodic in the x and y directions and exponential in the 
z− direction. 

Due to the completeness of the Fourier series, Fourier coefficient 
components for certain (kx, ky) mode can be written as: 

( )
( )

z

z

z

k z
x 1 y 2 x 3

k z
y 1 x 2 y 3

k zs s
x 1 z 3

s s

u k z K k K ik K e

v k z K k K ik K  e

ë 3ì
w ik z i K k K e

ë ì

ˆ

ˆ

ˆ

−

−

−

+− − − − −

+− − − − −

+− − − −

= + − + ⋅

= + + + ⋅

  +
= − + + ⋅   +  











                 (11)

Thus, the correction displacement field is written as: 

( ) ( ) ( )x y

x y

ik x ik y
i i x y

k k

ˆu x, y, z u k ,k , z .e
− −

+ +− − − −=∑∑                (12)

The correction displacement components ( )u ,  v ,ˆ ˆ ŵ − − −  on the free 
surface plane z− = 0 for certain (kx, ky) mode can be written as: 

Figure 2: Diagram of decomposition of film-substrate system containing 
dislocation loops L1 within the upper thin foil A and dislocation loops L2 with the 
lower layer B into a two-step linear superposition problem: (a), bulk stress and
{ }bulk

ij A
σ ; (b), correction traction stress { }correction

i3 A
σ  and { }correction

i3 B
σ ; (c), continuous 

interface displacement and traction stress are generated at interface plane; and 
free traction boundary conditions are satisfied on the top surface planes of the 
film-substrate system. 
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1

2

3

u K

v N . K

w K

ˆ

ˆ

ˆ

− −

− − −

− −

   
       =    
   
      

                (13)

where the details of [N−] are shown in Appendix (A. 1). 
Following the displacement field solution in Eq. (10), it is 

straightforward to obtain the strain field ijˆ−ε  through differentiation 

rule and the stress field ijˆ −σ  by using Hooke’s law. The traction stress 
field can also be written in the form of Fourier series: 

( ) ( ) ( )x y

x y

ik x ik y
i3 i3 x y

k k

ˆx, y, z k ,  k , z e+ +− − − −σ = σ ⋅∑∑             (14)

The correction traction stress components ( )13 23 33ˆ ˆ ˆ, ,− − −σ σ σ  on the 
free surface plane z− = 0 for certain ( )x yk ,k  mode can be written as: 

13 1

23 2

33 3

K

M

K

ˆ

ˆ

.ˆ K

− −

− − −

− −

   σ
       σ =    
   σ      

                (15)

and the details of M− 
   are shown in Appendix (A. 2). 

The numerical solutions of Eqs. (10)-(15) for the substrate medium 
are considered in the x and y directions with periodic lengths Lx and 
Ly.The wave number is set to be kx = 2πnx/Lx and ky = 2πny/Ly, where nx 
= ny = 0, ±1,  2, ±3… 

Correction Stress of upper Thin Film
Similar to the efficient semi-analytical image stress solution derived 

by Weinberger et al. [15] of isotropic thin foils, an arbitrary correction 
elastic field written in the form of Fourier series with unknown Fourier 
coefficients is employed for solving the correction elastic field of the 
film medium A. 

In the absence of body forces, the stress equilibrium of an isotropic 
linear medium composed of upper thin film medium A can be written 
in terms of the displacement  as: 

( )f f f
i, jj j, jiu u 0+ +µ + λ +µ =                  (16)

where ( )f f f f2 v / 1 2vλ = µ − , µf and vf are the shear modulus and 
Poisson’s ratio for the upper thin film medium A. The thin film is 
assumed to have a thickness of 2h in the z+ direction, and −h z+ ≤ h. 

The correction elastic field can be written as sum over Fourier 
series, and the solution is periodic in the x and y directions, and 
hyperbolic in the z+ direction. 

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

( )

x y

x y

x y

x y

x y x z ik x ik y

k k
x y x z
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k k
y x y z
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z z z
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z

k z A k F ik G k z
u e
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v e

k z E k B ik C k z

ë 3ì
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ë ì
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ik z E

sinh

cosh

sinh

cosh

cosh

+ +
++

+ +

+ +
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+ +

+ +

+

+

 − +
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 + +
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 +
− + + + =

+ −

∑

∑

∑

∑

( )
( )x y

x y

ik x ik y

k k
f f

z z
f f

e
ë 3ì

i A k C k z
ë ì

sinh

+

+

 
 
  ⋅  +





 + +  















 +  

∑∑

       (17)

where 2 2
z x yk k k= + , and the unknown terms (A,B,C) and (E,F,G) are 

complex constants. 

Due to the mathematical completeness of Fourier series, the 
Fourier coefficient components for each Fourier (kx, ky) mode is: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

x y x z

x y x z

y x y z

y x y z

f f
z z z

f f

f f
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ˆ
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u
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w
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ik z E i A k C k z
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ˆ

sinh

cosh

sinh
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+ +
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+ +

+ +
+
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+
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 =  + − +  

 +
− + + + =
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+ − + + + 
( )+






 
 









 
 
 






  







                        (18)

Alternatively, the correction displacement field in Eq. (17) can be 
written as: 

( ) ( ) ( )
x y

i i x y x y
k k

u x, y, z u k ,k , z .expˆ ik x ik y+ + + + = + ∑∑               (19)

and the correction traction stress can be obtained from isotropic 
Hooke’s law: 

( ) ( ) ( )
x y

i3 i3 x y x y
k k

x, y, z k ,k , z .exp ik x ik yˆ+ + + + σ = σ + ∑∑                        (20)

Then, Eq. (20) was submitted into the equilibrium Eq. (16), 
correction displacement fields on the surface planes z+ = ± h can 
be combined together, and rewritten into two sets of equations on 
unknown coefficients (A,B,C) and (E,F,G), which correspond to the 
symmetrical and the asymmetrical parts, respectively. 

The symmetrical correction displacement is: 

( )
z h z h

S S
x yz h z h

z h z h

u u
A

1u v v N B exp ik x ik y
2

C
w

ˆ ˆ

ˆ ˆ

ˆ ŵ

+ +
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               (21)

and the asymmetrical correction displacement part is: 
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      (22)

The symmetrical correction traction stress is: 

( )
13 13z h z h
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σ σ
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                   (23)

and the asymmetrical correction traction stress is: 

( )
13 13z h z h
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                (24)

The explicit expressions for the correction displacement and 
traction stress matrices [MS], [MA], [NS] and [NA] are given in Appendix 
(A. 3) - (A. 6). 

The calculation procedures of Eqs. (17)-(24) for isotropic thin film 
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are considered in the x and y directions with periodic lengths Lx and 
Ly.The wave number is set to be kx = 2πnx/Lx and ky = 2πny/Ly, where nx 
= ny = 0, ±1, ±2, ±3… 

Elastic Field of Perfect Bonding Film-Substrate System
Considering the displacement and traction stress continuity 

requirements in Eqs. (1)-(3) for the perfect bonding film-substrate 
system, following relation stands for each (kx, ky) Fourier mode. 

Free traction stress on the free surface plane of the perfect bonding 
film-substrate system should be satisfied:

{ } { }correction
i3 i3z h z h

ˆ ˆ 0∞
+ +=+ =+σ + σ = (25)

Interface traction stress and displacement continuity across the 
interface plane of the perfect bonding film-substrate system should be 
satisfied: 

{ } { } { } { }correction correction
i3 i3 i3 i3z h z h z 0 z 0

ˆ ˆ ˆ ˆ∞ ∞
+ + − −=− =− = =σ + σ = σ + σ   (26)

and

{ } { } { } { }correction correction
i i i iz h z h z 0 z 0ˆ ˆ ˆu u u û∞ ∞

+ + − −=+ =+ = =+ = +                 (27)

After submitting the bulk elastic field and correction elastic field 
into Eqs. (25)-(27), the following relations stand for each (kx, ky) 
Fourier mode. 

(a) Free traction boundary condition should be satisfied on the top 
free surface plane of the thin film A for each (kx, ky) Fourier mode. 
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(28)

(b) Interface traction stress should be continuous for each (kx, ky)
Fourier mode. 
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  (29)

in which, { }ijK diag 1,1 ,  1  = −  is a 3*3 diagonal matrix.

(c) Interface displacement should be continuous for each (kx, ky)
Fourier mode. 
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     (30)

In summary, Eqs. (28)-(30) can be written together as:
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      (31) 

Then, unknown coefficient (A,B,C,E,F,G) and ( )1 2 3K ,  K ,  K− − −

of correction displacement can be solved from Eq. (31), and the 
correction elastic field of the film medium A and substrate medium B 
can be generated. 

The total elastic field is the sum of the two contribution parts: 

bulk elastic field { }bulk
ij A

σ̂ and { }bulk
ij B

σ̂ ; and correction elastic fields 

{ }correction
ij A

σ̂ and { }correction
ij B

σ̂ , respectively. 

Total displacement within the upper film A of the film-substrate 
system is:

{ } { } { }final bulk correction
i i iA A Au u uˆ ˆ ˆ+= (32)

Total stress within the upper film A of the film-substrate system is:

{ } { } { }final bulk correction
ij ij ijA A A

ˆ ˆ ˆσ = σ σ+ (33)

Total displacement within the substrate B of the film-substrate 
system is:

{ } { } { }final bulk correction
i i iB B Bu u uˆ ˆ ˆ+= (34)

Total stress within the substrate B of the film-substrate system is:

{ } { } { }final bulk correction
ij ij ijB B B

ˆ ˆ ˆσ = σ σ+ (35)

Calculation Examples
In this section, the above semi-analytical approach is employed for 

analyzing the elastic fields induced by dislocation loop within perfect 
bonding isotropic Cu-Nb film-substrate system. The local Cartesian 
coordinate (x+, y+, z+) is along 112( ) , 110( )  and (111) in upper Cu thin 
foil; and the local Cartesian coordinate (x−, y−, z−) is along 112( ) , 111( )  and 
(110) in lower Nb substrate medium. The origin of the upper Cartesian 
coordinate is in the middle of the Cu thin foil, and the origin of the lower 
Nb half space is on the interface plane of the film-substrate system.
In all the calculation examples below, dislocation loop is segmented 
into 40 straight dislocation segments along the circular perimeter 
for a round, and bulk displacement and stress fields are obtained 
through integrating the dislocation segments around the dislocation 
loop perimeter, based on Volterra’s [17], Devincre’s [18] and Mura’s 
integration formulas [19], respectively. The elastic modulus of Cu and 
Nb is shown in Table 1, and the isotropic equivalent shear modulus 
and Poisson’s ratio are treated with Voigt isotropic model [20,21]. In 
the following simulation examples, the periodic length on the interface 
plane is Lx = Ly = 200 nm, the meshing density is nx = ny = 200, and the 
Fourier wave number range is: −30 ≤ kx ≤ 30 and −30 ≤ ky ≤ 30.

Elastic Field due to a Dislocation Loop in the Substrate 
Medium 

In this section, elastic displacement and traction stress due to 
a dislocation loop in the lower Nb substrate medium of the perfect 
bonding Cu-Nb film-substrate system are studied, and the thickness of 
the upper Cu film is assumed to be 40 nm. The circular 1/2a〈110〉(111) 

Material C11 
(GPa)

C12 
(GPa)

C14 
(GPa)

Voigt shear 
modulus 

(GPa)

Voigt 
Poisson’s 

ratio (-)

Lattice 
constant 

(nm)
Cu 168.4 121.4 75.4 54.64 0.3241 a=0.36149
Nb 240.2 125.6 28.2 39.84 0.3875 a=0.33004

Table 1: Elastic  parameters  of pure Cu and Nb [20,21]. 
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dislocation loop with radius r = 5 nm is located at a distance d = 10 
nm below the interface plane in lower Nb medium, and its habit plane 
is inclined to the interface plane. Figures 3a, 3b, 3e and 3f are the side 
view of the elastic field plotted in the σxz plane (y = 0), and Figures 3c 
and 3d are the side view of the elastic field plotted in the oyz plane (x = 
0) for the perfect bonding Cu-Nb film-substrate system. It can be seen 
that the final interface in plane and out of plane displacement field, 
traction stress field across the interface plane are identical, and thus 
continuous displacement and traction stress is generated. 

As shown in Figure 4, correction elastic field are superimposed onto 
the bulk elastic field, thus generating the final interface elastic field, and 
the contributions from bulk and correction elastic fields are compared 
with each other. As shown in Figures 4a-4f, interface displacement 
profile of u and w, and interface traction stress σxz and σzz are plotted 
along x direction (y = 0) on the interface plane of the perfect bonding 
Cu-Nb film-substrate system; as shown in Figures 4c and 4d, interface 
displacement profile of v and interface traction stress σyz are plotted 
along y direction (x = 0) on the interface plane of the perfect bonding 
Cu-Nb film-substrate system. It can be seen from Figures 4b, 4d and 

4f that the amplitudes of bulk traction stress are slightly strengthened 
on the interface plane, as the Voigt shear modulus of upper layer Cu is 
larger than lower layer Nb, and the traction stress due to a dislocation 
loop in the lower substrate Nb is slightly strengthened by the upper Cu 
film at the perfect bonding interface plane. 

Elastic Field due to a Dislocation Loop in the Film Me-
dium 

In this section, elastic displacement and traction stress due to a 
dislocation loop in the upper Cu film of the perfect bonding Cu-Nb 
film-substrate system are studied, and the thickness of the upper Cu 
film is assumed to be 40 nm. The circular 1/3a(111)(111) dislocation 
loop with radius r = 5 nm is located in the middle of upper Cu thin 
film, and its habit plane is parallel to the interface plane. Figures 5a, 5b, 
5e and 5f are the side view of the elastic field plotted in the oxz plane (y 
= 0), and Figures 5c and 5d are the side view of the elastic field plotted 
in the oyz plane (x = 0) for the perfect bonding Cu-Nb film-substrate 
system. It can be seen that the final interface in plane and out of plane 
displacement field, traction stress field across the interface plane are 

Figure 3: Elastic fields due to a dislocation loop in the lower Nb substrate of the 
perfect bonding Cu–Nb film-substrate system: displacement field (a) u final; (c), 

v final; (e) w final
 (in unit: nm); traction stress (b) final

xzσ ; (d), final
yzσ ; (f) final

zzσ (in 
unit: GPa). 

Figure 4: Elastic profile due to a dislocation loop in the lower Nb substrate of the 
perfect bonding Cu–Nb film-substrate system: displacement profile (a) u final; (c) 

v final; (e) w final
 (in unit: nm); traction stress profile (b) final

xzσ ; (d) final
yzσ ; (f) final

zzσ
(in unit: GPa). 

Figure 5: Elastic fields due to a dislocation loop in the upper Cu film of the 
perfect bonding Cu–Nb film-substrate system: displacement field (a)  u final; (c) 

v final; (e) finalw (in unit: nm); traction stress (b) final
xzσ ; (d) final

yzσ ; (f) final
zzσ (in 

unit: GPa). 

Figure 6: Elastic profile due to a dislocation loop in the upper Cu film of the 
perfect bonding Cu–Nb film-substrate system: displacement profile (a) u final; (c) v 

final; (e) finalw (in unit: nm); traction stress profile (b) final
xzσ ; (d) final

yzσ ; (f) final
zzσ

(in unit: GPa). 
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identical, and thus continuous displacement and traction stress is 
generated. 

As shown in Figures 6a, 6b, 6e and 6f, interface displacement 
profile of u and w, and interface traction stress σxz and σzz are plotted 
along x direction (y = 0) on the interface plane of the perfect bonding 
Cu-Nb film-substrate system; as shown in Figures 6c and 6d, interface 
displacement profile of v and interface traction stress σyz are plotted 
along y direction (x = 0) on the interface plane of the perfect bonding 
Cu-Nb film-substrate system. It can be seen from Figures 6b, 6d and 6f 
that the amplitudes of bulk traction stress are slightly weakened on the 
interface plane, as the Voigt shear modulus of upper layer Cu is larger 
than lower layer Nb, and the traction stress due to a dislocation loop in 
the upper Cu film is slightly weakened by the lower Nb substrate at the 
perfect bonding interface plane. 

Film Thickness Effect on Elastic Field of a Dislocation 
Loop in the Film Medium

In this subsection, effects of film thickness on the interface 
displacement and interface traction stress amplitudes are investigated. 
Besides Cu film thickness, the physical and material parameters 
of dislocation loop and film-substrate system are identical to the 
simulated Cu-Nb film-substrate system example in subsection 3.2. The 
thin Cu film thickness is assumed to be: t = 20, 30, 40, 50 and 60 nm, 
and the dislocation loop is situated in the middle of the upper thin Cu 
film. The simulation results are shown in Figure 7, and side view of 
the traction stress σxz  and σzz  are plotted in the oxz plane (y = 0) for 
the perfect bonding Cu-Nb film-substrate system. It can be concluded 
from Figure 7 that: with the decrease of film thickness, bulk elastic field 
at interface plane are changed more remarkable by correction stress. 

Loop Depth Effect on Elastic Field of a Dislocation Loop 
in the Film Medium

In this subsection, effects of dislocation loop depth within the upper 
Cu thin film of the Cu-Nb film-substrate system on the elastic field are 
studied. Besides loop depth, physical parameters of the dislocation loop 
and perfect bonding film-substrate system are identical to the simulated 
Cu-Nb film-substrate system example in subsection 3.2. The distance 
from dislocation loop center to the interface plane is assumed to be: d 
= 5, 10, 15, 20, 25 and 30 nm, and the film thickness is assumed to be t 
= 40 nm. The simulation results are shown in Figure 8, and side view of 
the traction stress σxz  and σzz are plotted in the oxz plane (y = 0) for the 
perfect bonding Cu-Nb film-substrate system. It can be concluded from 
Figure 8 that the interface and free surface can influence the bulk elastic 
field drastically. With the increase of the distance from dislocation loop 
center to the interface plane, bulk elastic field at interface plane are 
changed more remarkable by correction stress. 

Conclusion
A semi-analytical calculation approach based on 2D discrete FFT is 

developed for studying the elastic field due to dislocation loop in perfect 
bonding thin film-substrate system. Final elastic field is calculated as 
the linear superposition of bulk stress and the correction stress. 

Reliability of the semi-analytical solution is verified by studying 
the elastic field of dislocation loop within perfect bonding Cu-Nb film-
substrate system. Effects of film thickness and loop depth within thin 
film on the elastic field are analyzed, demonstrating that these two 
factors have a significant impact on the elastic fields of dislocation 
loops in the thin film. 

Figure 7: Film thickness effect on elastic fields due to a dislocation loop in the 
upper Cu film of perfect bonding Cu–Nb film-substrate system. Traction stress 

field 
final
xzσ  and final

zzσ : (a)–(b), t=20 nm; (c)–(d), t=30 nm; (e)–(f), t=40 nm;
(g)–(h)  t=50 nm; (i)–(j), t=60 nm (in unit: GPa). 

Figure 8: Dislocation loop depth effect on elastic fields due to a dislocation loop 
in the upper Cu film of perfect bonding Cu–Nb film-substrate system. Traction 

stress field final
xzσ  and final

zzσ : (a)–(b) d=5 nm; (c)–(d) d=10 nm; (e)–(f) d=15
nm; (g)–(h) d=20  nm; (i)–(j) d=25 nm; (k)–(l) d=30 nm; (in unit: GPa).
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