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Skeletal tissues including bone and cartilage experience significant 
mechanical stresses following normal physical activity. In bone, 
resultant microcracks are continuously repaired as a result of 
coordinated activity of osteoblasts, their progenitors – multipotential 
stromal/stem cells (MSCs) and osteo clasts, the bone-resorbing cells [1]. 
Physiological cartilage repair mechanisms are less well understood, but 
could be potentially mediated by MSCs present in cartilage superficial 
layer [2,3], synovium [4,5] or synovial fluid [6,7].

Significant damages to bone and cartilage can occur as a result of 
acute injury (trauma) or due to chronic disease (such as osteoarthritis). 
In acute settings, the last two decades have witnessed a significant 
advance in tissue engineering approaches to repair bone in cartilage, 
with the use of scaffolds seeded with large numbers of culture-amplified 
MSCs. However, more recent research has indicated that loading 
scaffolds with culture-expanded stem cells may not be absolutely 
required, and depends on the nature and size of the defect [8,9]. This 
Editorial will highlight recent advances in bone and cartilage repair 
strategies based on enhancing the recruitment of endogenous MSCs 
into the defect areas.

Bone Repair
Fracture is a typical example of acute injury to bone that normally 

repairs itself. Non-union (failure to repair) commonly occurs when 
bone loss is too large (a critical-size defect) or when a patient presents 
with co-morbidities, such as diabetes, smoking, or high blood pressure 
[10]. The repair of critical-size defects requires the provision of 
mechanical stability and the presence of sufficient numbers of MSCs 
and vascular progenitors at the repair site [11]. 

The first successful tissue-engineering constructs to repair critical 
size defects in humans were based on culture-expanded bone marrow 
MSCs seeded on macroporous hydroxyapatite scaffolds [12]. Although 
they were implanted over a decade ago, the uptake of this technology 
in general clinical practice remains low; this is most likely due to the 
requirement of two surgeries (for MSC harvesting and implantation), 
difficulties in regulating the safety of such complex cellular products 
and the associated high costs of therapy. Instead, a so called Ilizarov 
distraction/bone transfer technique remains one of the most common 
methods for large defect reconstruction [13]. In basic terms, it relies 
on stabilizing the biomechanics and reducing the distance between 
the bone ends, followed by a very slow and controlled ‘stretching’ thus 
allowing a newly-formed callus tissue to be gradually vascularized and 
remodeled. It is believed that in this technique, the repair cells (MSCs) 
originate from the neighboring tissues such as periosteum [14]. As an 
alternative, pieces of autograft bone, containing patient’s own MSCs 
and a bone scaffold, are placed inside the defect area; the remaining 
bone void is filled with a so called ‘graft expander’, normally a synthetic 
scaffold, and mechanically stabilized. Graft material can be additionally 
loaded with concentrated BM aspirate from the same patient in order 
to provide additional MSCs [8,15,16].

The success of these empirical surgical approaches suggests 
that even for very large bone defects culture-expanding MSCs to 
increase their numbers million-fold may not be necessary. Instead, 
the provision of correct biomechanical environment seems to be the 
key, coupled with a scaffold that permits colonization by neighboring 
tissue-resident MSCs. Potent chemokine molecules such as stromal 
cell-derived factor 1 (SDF-1/CXCL12) and monocyte-specific 
chemokine 3 (MCP-3) may facilitate further recruitment of MSCs and 
subsequent graft vascularization in vivo [17-19]. Similar strategies 
based on manipulating resident MSCs for cartilage tissue regeneration 
are illustrated below.

Cartilage Repair
It is well-recognized that cartilage repair critically depends on the 

depth of a defect; full-thickness (osteochondral) defects that penetrate 
into the subchondral bone repair much better than partial-thickness 
(chondral) defects that commonly fail to repair [20]. This difference 
can be explained by larger numbers of MSCs present in subchondral 
bone [21,22] as opposed to their relative paucity in cartilage [2,3] or 
synovial fluid [6,7]. A surgical procedure called microfracture remains 
the gold standard for the treatment of isolated cartilage defects [23]; in 
this technique drilling into the subchondral bone plate creates a blood 
clot that is believed to have two valuable functions: first, it serves as a 
source of chemokines bringing subchondral bone MSCs to the repair 
site and second, it acts as a fibrin-based natural scaffold allowing 
retention, proliferation and chondrogenic differentiation of migrated 
MSCs [22]. 

Although it is generally assumed that MSCs residing in 
subchondral bone cavities are chiefly responsible for cartilage repair 
following microfracture, other joint-resident MSCs as synovium 
MSCs [5], synovial fluid MSCs [24] or superficial cartilage MSCs [2,3] 
could be also involved, particularly since these MSC types are known 
to possess high chondrogenic potentials [24,25] and to have a direct 
access to cartilage. Recently, Sharma et al. [26] detected the presence 
of synovial fluid in the defect areas three weeks after implantation of 
empty hydrogel-based scaffolds, combined with microfracture, in 
fifteen patients with isolated cartilage lesions. MSCs injected into the 
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joint space have been found in regenerated cartilage and meniscus [27], 
proving that these MSC could migrate through the fluid and reach the 
damaged areas of cartilage. Finally, the penetration of host cells into the 
defect site, ‘assumedly from the surrounding marrow and/or synovial 
spaces’, has been eloquently shown in Quintavalla et al. study [28].

How these endogenous MSCs are recruited into cartilage defects 
remains unclear. In a case of microfracture, a passive release of 
MSCs from the subchondral bone or the bone marrow is possible; 
however it is likely to be followed by their active migration driven by a 
simultaneous release of potent chemokine molecules into the synovial 
fluid [29]. Recently, several chemokines present in the synovial fluid, 
such as CCL25, CXCL10 and XCL1 were implicated in these migration 
processes [30]. Platelet-derived growth factors (PDGFs), concentrated 
inside the fibrin clot [31] and shown to be chemotaxic for MSCs [32], 
could be also involved. These PDGFs could influence MSC migration, 
as well as their subsequent proliferation [33], differentiation and matrix 
synthesis.

It can be envisaged that in principle, similar MSC migration 
mechanisms could be re-created with the use of ‘smart’ scaffolds 
placed in the defect site. In order to develop these new approaches, a 
better knowledge of the types of chemokines and their corresponding 
receptors on the surface of different types of MSCs is needed. For 
example, implantation of scaffolds loaded with TGFβ3 has led to 
excellent repair, by endogenous cell homing, in a rabbit model [34]. 
Migration of human synovial MSCs and their infiltration into similar 
scaffolds was improved with the creation of a stable gradient of SDF-
1/CXCL12 [35]. The most recent work from the same laboratory has 
highlighted ‘the need to test multiple cytokines concurrently due to 
synergistic or antagonistic effects’ [36]. 

MSCs from different tissues possess different migration potentials 
towards the same chemokine because they express different patterns of 
the corresponding chemokine receptors [37-39]. Cultured MSCs lose 
a full repertoire of their chemokine receptors after extensive passaging 
[37]. Further work is therefore needed to isolate uncultured MSCs from 
the joint tissues, such as synovium, and to investigate their chemokine 
receptor expression and the chemokine responsiveness prior to in vitro 
culture. This knowledge would help to design novel scaffolds, loaded 
with specific chemokines, in order to attract endogenous MSCs into the 
sites of cartilage damage.

Conclusion
Recent evidence suggests that manipulating the migration of 

endogenous MSCs from tissues surrounding bone or cartilage defects 
could represent a viable alternative to traditional tissue engineering 
approaches with scaffolds seeded with culture-expanded MSCs. Further 
work is needed to better understand the in vivo signaling mechanisms 
responsible for physiological chemokine releases post-injury [40] as 
well as to study the cellular interactions between migrated MSCs and 
other cells resident in damaged tissues [41].
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