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Staphylococci can induce a wide spectrum of infectious diseases 
that are associated with remarkable morbidity and mortality [1]. In fact, 
community and hospital-acquired methicillin resistant Staphylococcus 
aureus (MRSA) is a major health problem that has created a pressing 
need for novel therapeutic options [2]. Importantly, pathogenic 
staphylococci have not only an amazing ability to acquire resistance to 
antibiotics, but also to form biofilms, bacterial communities that grow 
on surfaces and are surrounded by a self-produced polymer matrix. 
This latter characteristic is likely the most important virulence factor 
of staphylococci in the development of the chronic form of infectious 
diseases in humans such as otitis media, osteomyelitis, endophtalmitis, 
urinary tract infections, acute septic arthritis, native valve endocarditis, 
burn or wound infections and cystic fibrosis associated infections [3-9]. 

Staphylococcal biofilms are particularly dangerous because they are 
more resistant to host immune defence systems and have a significantly 
increased tolerance to antibiotics [10]. The polymer matrix of a biofilm 
retards the rate of antibiotic penetration of antibiotics such that the 
expression of genes within the biofilm that mediate resistance can be 
induced [3]. This is compounded by the fact that bacterial cells growing 
in biofilm show increased horizontal gene transmission, which can 
facilitate the spread antibiotic resistance traits [11]. 

The recurrence of some staphylococcal infections in the hospital 
setting has been attributed to the existence of specialized persister 
cells [12]. In S. aureus biofilms, although these persister cells do not 
grow in the presence of an antibiotic, they also do not die. When the 
drug is removed, the persister cells will give rise to a normal bacterial 
colony. It has been observed that S.aureus in biofilms is 100–1000 times 
less susceptible to antibiotics than equivalent bacterial populations of 
single cells (planktonic) [13]. Although conventional antibiotics can be 
effective against planktonic cells, there are currently no therapies that 
effectively target staphylococcal biofilms. 

Staphylococcal biofilms are also responsible for many biomaterial-
associated infections (BAI). Together, the Gram-positive pathogens 
S. aureus, S. epidermidis and Enterococcus faecalis represent more 
than 50% of the species isolated from patients with medical device-
associated infections [15]. S. aureus is often the cause of metal-
biomaterial infections, while Staphylococcus epidermidis is seen more 
often in polymer associated infections [14]. 

The continual increase in the use of medical devices is 
associated with a significant risk of infectious complications, septic 
thrombophlebitis, endocarditis, metastatic infections, and sepsis 
[17,18]. Biofilm associated infections of indwelling medical devices are 
usually resolved after replacement of the device but involve a prolonged 
hospital stay and increased healthcare costs. In fact, the treatment of 
catheter-related bloodstream infections that arise during intensive 
care unit stays in four European countries (France, Germany, Italy, 
UK), has an estimated cost of € 163.9 million [16]. If one considers 
that an increasing number of elderly patients require indwelling 
medical devices like artificial knees and hips, it becomes clear that a 
new generation of anti-infective agents effective in the prevention or 
eradication of biofilms is needed [19]. 

There is undoubtedly an urgent need for novel treatments, 
strategies and anti-staphylococcal biofilm agents. In this field of 
preclinical research, three different approaches are followed: (i) screen 
based strategies, (ii) target-based strategies, and (iii) biofilm matrix 
targeting strategies. The screen based strategies involved screening 
novel compounds (synthetic or natural) for inhibition staphylococcal 
biofilms through direct effects on bacterial growth and viability. 
The hope is that these screens will identify agents that may serve as 
alternatives to conventional antibiotics. Target-based strategies, on 
the other hand, focus on identifying or developing compounds that 
specifically target pathways that are essential for staphylococcal biofilm 
formation. The biofilm matrix targeting strategies instead, are aimed at 
identifying enzymes that target staphylococcal biofilm matrix. 

The first approach has led to the identification and characterization 
of a number of small synthetic organic molecules with anti-biofilm 
properties. For instance, a collection of 2-aminoimidazole/triazole were 
synthesized and screened for anti-biofilm activity and found to inhibit 
biofilm formation against Acinetobacter baumannii, Staphylococcus 
aureus and Pseudomonas aeruginosa. One such compound in this 
library demonstrated the most potent inhibitory effect against S.aureus 
biofilm formation that has been displayed by any 2-aminoimidazole 
derivative [20]. Furthermore, a recent study that looked at the anti-
staphylococcal biofilm activity of pyrrolomycins C, D, F1, F2a, F2b, 
F3 naturally produced by Actinosporanfium vitaminophylum and 
Strepyomyces ssp., and of the synthesized related compounds I, II, III, 
found that some of the tested compounds were active at the lowest 
screening concentration of 0.045 μg/mL [22].

Slow-growing and non-dividing bacteria, such as the 
aforementioned persister cells, exhibit tolerance to many antibiotics 
and represent a reservoir for recurrent biofilm infections. Importantly, 
the novel porphyrin antibacterial agents, XF-70 and XF-73, which 
have rapid membrane-perturbing activity against S. aureus, were 
also active against growth-attenuated cells. These results support the 
hypothesis that membrane-active agents may be particularly effective 
in eradicating slow- or non-growing bacteria and suggest that XF-70 
and XF-73 could be utilized to treat staphylococcal infections where 
the organisms have a slow rate of division, such as biofilm-associated 
infections of prosthetic devices [21]. 
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In order to adequately assess the utility of any of these new 
compounds as antibiofilm agents, their toxicity against human cells 
must be evaluated and their selectivity indexes (ratio of cytotoxicity 
as IC50 to anti-biofilm concentration) determined. A selectivity index 
value >200 can be considered a good “safety margin” for a compound 
that will be used for potential therapeutic development as antimicrobial 
agent [23]. In fact, only those compounds that show good selectivity 
indexes can be considered promising inhibitors for developing novel 
agents against staphylococcal biofilms. 

An interesting class of antimicrobial agents are the antimicrobial 
peptides (AMPs), which have different modes of action than those 
of conventional antibiotics. AMPs are small molecules with a broad 
antimicrobial spectrum. AMPs from different natural sources such 
as terrestrial or marine animals have been studied for their anti-
staphylococcal biofilm activity. An example of a recently identified 
AMP is PSN-1, a novel 19 amino acid antimicrobial peptide of the 
phylloseptin family, isolated from the skin secretion of the waxy monkey 
frog, Phyllomedusa sauvagei. PSN-1 displayed broad-spectrum activity 
against a range of planktonic organisms with a high potency (MIC 
5µM) against Staphylococcus aureus. In a specific bioassay S. aureus 
grown as a biofilm, the minimal biofilm eradication concentration 
(MBEC) was found to be of the same high potency (5µM) [24]. 

Some authors have focused on marine invertebrates as a source of 
new antimicrobial agents. AMPs from marine invertebrates display 
broad antimicrobial spectra, even against human pathogens. Indeed, 
many of these organisms are not fouled so they must possess an effective 
defense strategy to prevent bacterial adhesion. The 5kDa peptide 
fraction of the cytosol from coelomocytes (5-CC), the effector cells 
of Paracentrotus lividus (sea-urchin), showed antibiofilm properties 
against staphylococcal biofilms of reference strains Staphylococcus 
epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213. The 
antimicrobial efficacy of 5-CC against biofilms of clinical strain S. 
epidermidis 1457 was also tested. At a sub-MIC concentration (31.7 
mg/mL) of 5-CC the formation of young (6h old) and mature (24h old) 
staphylococcal biofilms was inhibited. The biological activity of 5-CC 
could be attributed to three novel antimicrobial peptides belonging to 
the sequence segment 9-41 of a beta-thymosin [25].

The second approach, aimed at developing target-based agents, 
represents a rational strategy for discovering staphylococcal biofilm 
inhibitors. Quorum-sensing (QS) is a complex regulatory mechanism 
in biofilm formation. It is a process that is dependent on the release of 
chemical signals called autoinducers. These autoinducers allow bacteria 
to assess the density of the local bacterial population and coordinate 
the expression of a wide array of genes and phenotypes including 
bacterial virulence and pathogenesis [26]. Among Gram-positive 
species, QS autoinducers are unmodified or post-transcriptionally 
modified peptides, cyclic thiolactone peptides (AIPs) [27]. It has been 
proposed that novel compounds with close sequence similarity to AIPs 
may function as antagonists and may provide an alternative way of 
treating S.aureus infections [26]. 

The agr (accessory gene regulation) system of S.aureus is a model 
for QS systems in Gram-positive bacteria. The agr QS system consists 
of a four-gene operon (agrB, agrD, agrC, agrA) that synthesizes and 
secretes AIPs. AIPs bind to and activate agrC, a membrane bound 
histidine sensor kinase (the major environmental sensory system in 
prokaryotic cells), which in turn phosphorylates and activates agrA, 
a transcription factor that regulates the production of the effector 
molecule RNAIII. Interestingly, a mechanism that interferes with 
biofilm formation in S. aureus involves the heptapeptide RNAIII-

inhibiting peptide (RIP). This heptapeptide inhibits biofilm formation 
of S.aureus in vivo [28], possibly by blocking the agr dependent QS 
system [29]. In fact bone cement containing RIP has been patented as 
a means to prevent the colonisation and the development of biofilm on 
bone cement implant [30]. 

It is important to note, however, that the agr system might not be 
RIP’s primary target. In fact, it has also been reported that inhibition of 
the agr system increases biofilm formation [31]. RIP appears to have an 
effect on biofilm formation, and as such, its structure is an interesting 
subject for modelling studies aimed at the identification of other 
biofilm inhibitors. Through structure based virtual screening using RIP 
as a template, hamamelitannin, a RIP non peptide-analogue derived 
from the bark of Hamamelis virginiana (witch hazel), that prevents 
device-associated MRSA infections in a concentration dependent 
manner was identified [32]. This work represents a clever variation of 
the structure-based screening approach in which the molecule used for 
modelling studies was not the target of a desired inhibitor, but itself an 
inhibitor [33].

The third approach consists in targeting the extracellular polymeric 
substance (EPS) matrix of bacterial biofilms. EPS is a complex mixture 
of components that can consist of polysaccharides, proteins, nucleic 
acids and/or lipids [34]. Purified N-acetylglucosaminidase, dispersin B, 
produced by the Gram-negative periodontal pathogen Actinobacillus 
actinomycetemcomitans, can dissolve mature biofilms produced by 
Staphylococcus epidermidis as well as some other bacterial species [35] 
by degrading polysaccharide intercellular adhesin (PIA) [36]. PIA is 
involved in the majority of staphylococcal biofilm associated infections 
and thus could be considered an ideal target for anti-biofilm drugs [37]. 
One recent study reported the synthesis of new polymeric matrices that 
can bind dispersin B alone or in combination with an antibiotic molecule, 
cefamandole nafate (CEF). These functionalized polyurethanes were 
able to adsorb a significant amount of dispersin B, which was able to exert 
its hydrolytic activity against the exopolysaccharide matrix produced 
by staphylococcal strains. When microbial biofilms were exposed to 
both dispersin B and CEF, a synergistic action became evident. Thus 
these polymer-dispersin B-antibiotic systems may be promising, highly 
effective tools for preventing bacterial colonization of medical devices 
[17]. Finally, a gel preparation containing dispersin B in combination 
with the disinfectant Triclosan has been marketed for the treatment of 
wound and skin infection and for disinfection of medical devices [38]. 
The downfall of this system is that, unfortunately, dispersin B cannot 
be used for the treatment of systemic biofilm-mediated infections, due 
to the immunogenic properties of bacterial enzymes [33]. The failure 
of conventional antibiotic therapy against bacterial biofilms can be 
attributed to the different mode of growth of pathogens as biofilms as 
opposed to planktonic pathogens. A chemotherapeutic approach that 
combines conventional antibiotics and novel anti-biofilm agents could 
be a new strategy for the treatment of biofilm associated infections. 
Some of the recently discovered inhibitors mentioned in this article 
show antibiofilm activity and selective toxicity, which make them good 
candidates for potential therapeutic development as effective chemical 
countermeasures against staphylococcal biofims. 
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