

Soil Science: Understanding Composition, Function, and Management

Gabriel Thompson*

Department of Environmental Sciences, University of Cape Town, Cape Town, South Africa

DESCRIPTION

Soil science is the study of the physical, chemical, and biological properties of soil, as well as its formation, classification, and interaction with living organisms and the environment. It plays a vital role in agriculture, ecosystem sustainability, and environmental management. Soil is a complex medium composed of mineral particles, organic matter, water, air, and countless microorganisms, all interacting in ways that influence fertility, water retention, and plant growth. Understanding soil processes is essential for efficient land use, conservation, and sustainable food production.

Soils are formed through the interaction of parent material, climate, topography, organisms, and time. These factors influence the development of soil horizons, the vertical layers that differ in composition and function. Weathering of rocks provides mineral components, while organic matter from decaying plants and animals enriches the soil with nutrients. Climate affects the rate of weathering, decomposition, and leaching of minerals, while topography influences drainage and erosion patterns. The activity of soil organisms, including bacteria, fungi, earthworms, and insects, contributes to nutrient cycling and structure formation.

Soil texture, determined by the proportion of sand, silt, and clay particles, affects water retention, aeration, and nutrient availability. Sandy soils have large particles and drain quickly but retain fewer nutrients. Clay soils, in contrast, hold water and nutrients effectively but may be prone to compaction and poor drainage. Loam, a balanced mixture of sand, silt, and clay, is generally considered ideal for agricultural purposes due to its favorable water and nutrient-holding capacity. Soil structure, which refers to the arrangement of particles into aggregates, also influences aeration, root penetration, and resistance to erosion.

Chemical properties of soil, including pH, cation exchange capacity, and nutrient content, play critical roles in plant growth. Soil pH affects nutrient solubility and microbial activity. Most crops thrive in slightly acidic to neutral soils, while extreme pH values can limit nutrient availability and harm soil organisms.

Essential nutrients such as nitrogen, phosphorus, and potassium must be available in adequate amounts, and soil testing helps guide fertilization strategies. Organic matter enhances nutrient supply, improves structure, and increases water-holding capacity.

Biological activity is another fundamental aspect of soil science. Microorganisms drive decomposition, nutrient cycling, and the formation of humus, which stabilizes soil structure. Earthworms and other soil fauna create channels that enhance aeration and water movement. Symbiotic relationships, such as those between legumes and nitrogen-fixing bacteria, contribute to nutrient enrichment and sustainability. Soil biodiversity is thus central to maintaining fertility, supporting plant growth, and ensuring ecosystem resilience.

Soil management and conservation are essential for sustainable agriculture and environmental protection. Practices such as crop rotation, cover cropping, reduced tillage, and organic amendments help maintain fertility and prevent erosion. Preventing soil degradation, including erosion, compaction, salinization, and contamination, is critical for sustaining food production and ecosystem health. Land use planning, conservation strategies, and responsible management of chemical inputs are crucial in mitigating adverse impacts on soil resources.

CONCLUSION

Soil science is a multidisciplinary field that examines the formation, composition, and function of soils, emphasizing their importance in agriculture, ecosystems, and environmental management. Understanding physical, chemical, and biological properties allows for effective soil use, conservation, and enhancement. Sustainable management practices, scientific research, and public awareness are essential to preserve soil resources, support food security, and maintain ecosystem balance. Encouraging sustainable practices protects soil resources, ensures long-term productivity, and safeguards environmental quality. International collaborations and research networks facilitate knowledge sharing and the adoption of best practices worldwide.

Correspondence to: Gabriel Thompson, Department of Environmental Sciences, University of Cape Town, Cape Town, South Africa, E-mail: gabriel.thompson_uct@edu.za

Received: 19-Aug-2025, Manuscript No. GJHABS-25-30759; **Editor assigned:** 21-Aug-2025, Pre QC No GJHABS-25-30759 (PQ); **Reviewed:** 04-Sep-2025, QC No. GJHABS-25-30759; **Revised:** 11-Sep-2025, Manuscript No. GJHABS-25-30759 (R); **Published:** 18-Sep-2025, DOI: 10.35248/2319-5584.25.14.264

Citation: Thompson G (2025). Soil Science: Understanding Composition, Function, and Management. Glob J Agric Health Sci. 14:264.

Copyright: © 2025 Thompson G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Garcia-Gonzalez V, Govantes F, Shaw LJ, Burns RG, Santero E. Nitrogen control of atrazine utilization in *Pseudomonas* sp. strain ADP. *Appl Environ Microbiol*. 2003;69(12):6987-6993.
2. Crone BC, Garland JL, Sorial GA, Vane LM. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. *Water res*. 2016;104:520-531.
3. Singh KS, Harada H, Viraraghavan T. Low-strength wastewater treatment by a UASB reactor. *Bioresour Technol*. 1996;55(3):187-194.
4. Evy A, Lakshmi V, Nilanjana D. Biodegradation of atrazine by *Cryptococcus laurentii* isolated from contaminated agricultural soil. *J Microbiol Biotechnol Res*. 2012;2(3):450-457.
5. Jacomini AE, Bonato PS, Avelar WEP. HPLC method for the analysis of atrazine in freshwater bivalves. *J Liq Chromatogr R T*. 2003;26(12):1885-1894.
6. Hassani AH, Borghei SM, Samadyar H, Ghanbari B. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: Kinetic and performance study. *Environ Technol*. 2014;35(4):499-507.
7. Borghei S, Sharbatmaleki M, Pourrezaie P, Borghei G. Kinetics of organic removal in fixed-bed aerobic biological reactor. *Bioresour Technol*. 2008;99(5):1118-1124.
8. Choi H, Lee A, Lee S. Comparison between a moving bed bioreactor and a fixed bed bioreactor for biological phosphate removal and denitrification. *Water Sci Technol*. 2012;65(10):1834-1838.
9. Jiang H, Zhang Z, Lin Z, Gong X, Guo H, Wang H. Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. *J Water Process Eng*. 2021;42:102189.
10. Lariyah M, Mohiyaden H, Hayder G, Hussein A, Basri H, Sabri A, et al. Application of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed Activated Sludge (IFAS) for biological river water purification system: A short review. *IOP Conf Ser Earth Environ Sci*. 2016;012005.