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Abstract
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem 

cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition 
to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell 
populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive 
cell population. These muscle-derived hematopoietic stem/progenitor cell populations are surprisingly capable 
of differentiation into hematopoietic cells both after transplantation into irradiated mice and during in vitro colony 
formation assay. Therefore, these muscle-derived hematopoietic stem/progenitor cells appear to have characteristics 
similar to classical hematopoietic stem/progenitor cells found in bone marrow. This review outlines recent findings 
regarding hematopoietic stem/progenitor cell populations residing in adult skeletal muscle and discusses their 
myogenic potential along with their role in the stem cell niche and related cell therapies for approaching treatment 
of Duchenne muscular dystrophy.
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Muscle Satellite Cells
Myogenic satellite cells are a stem cell population that contributes 

to postnatal muscle growth and regeneration that reside beneath the 
basal lamina of adult skeletal muscle, closely juxtaposed to the muscle 
fibers. Satellite cells are normally mitotically quiescent, but following 
injury or exercise, they initiate proliferation and give rise to daughter 
myogenic precursor cells [1-3]. After multiple rounds of cell division, 
these myogenic precursor cells exit their cell cycle and fuse with each 
other to terminally differentiate into multinucleated myotubes. The self-
renewal capacity within the satellite cell compartment was proven when 
considering the fact that the number of quiescent satellite cells in adult 
muscle remains relatively constant over multiple cycles of degeneration 
and regeneration [4,5]. In addition, recent work demonstrates that a 
small number of satellite cells can robustly contribute to regenerating 
muscle maintenance of the satellite cell compartment, confirming the 
proof of concept for stemness of satellite cells [6]. 

A decade ago, satellite cells were considered monopotent stem 
cells, with the ability to give rise only to cells of the myogenic cell 
lineage. Indeed, both quiescent satellite and myogenic precursor cells 
express markers for myogenic cells such as M-cadherin, Pax3, Pax7, 
and Myf5 during the quiescent state, and M-cadherin, Pax7, Myf5, 
MyoD and desmin during myogenic proliferation [7-11]. However, 
recent experiments have demonstrated that satellite cells possess 
multipotential differentiation capability. Upon induction, satellite 
cells are capable of differentiation into adipocytes and osteocytes 
in vitro [9,12] and fibroblast in vivo [13], indicating a mesenchymal 
differentiation potential of satellite cells. However, in vivo situation, 
the ability of adipogenic or osteogenic potential for satellite cells 
is very limited, and satellite cells may only contribute to skeletal 
myogenesis in normal situation [14-16]. More recently, satellite cells 
have been induced to generate induced Pluripotent Stem (iPS) cells 
by transduction of iPS cell-inducing transcription factors, Oct4, Sox2, 
cMyc and Klf4 [17-20]. 

Muscle-derived HSCs
Current work demonstrates that adult skeletal muscle-derived 

cells exhibit the capacity to reconstitute the entire hematopoietic 
repertoire following intravenous injection into lethally irradiated mice 
[21-29]. Myogenic cells have also been found to form multiple types 
of hematopoietic colonies by in vitro hematopoietic colony forming 
assay [25-30]. However, these muscle-derived hematopoietic stem cells 
(HSCs) and hematopoietic progenitor cells (HPCs) were confirmed as 
a distinct population from satellite cells [30]. 

During mouse embryogenesis, the process of primitive 
hematopoiesis begins in the yolk sac on embryonic day 7.5 (E7.5). 
Thereafter, definitive HSC activity is first detectable in the aorta-
gonad-mesonephros (AGM) region on E10, and then fetal liver and 
yolk sac. Subsequently, the fetal liver becomes the main tissue for 
definitive hematopoiesis by E12. During late embryogenesis, the HSC 
population in the fetal liver migrates to the bone marrow, which then 
remains the major site of hematopoiesis throughout adult life [31]. In 
adult, HSCs and HPCs originating from bone marrow readily colonize 
the adult spleen. However, it was initially controversial whether HSCs/
HPCs exist outside of bone marrow or spleen. Bartlett [32,33] first 
reported that a significant amount of hematopoietic colony forming 
units(spleen, CFU-s),were present in mouse adult brain. The average 
number of CFU-s obtained per dissociated adult brain-derived cells 
was significantly higher than those of other adult tissues including lung, 
kidney, heart, thymus and blood. However, Hoogerbrugge et al. [33] 
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failed to obtain such high number of CFU-s in adult brain. Therefore, 
they concluded that the CFU-s detected by Bartlett in preparations 
of mouse brain did not originate from the brain tissue. Recent work 
has challenged this question and revealed that HSCs/HPCs clearly 
exist in several adult tissues besides bone marrow and spleen [30,34]. 
For example, not only fetal liver but also adult liver has been shown 
to contain HSCs that reconstitute the entire hematopoiesis lineage in 
lethally irradiated animals [35,36]. In addition, adult lung contains 
large numbers of alveolar macrophages derived from progenitors [37]. 
Furthermore, T cell differentiation occurs in extra-thymic sites, such 
as intestine and liver [38,39]. For teleosts (fishes), the kidneys are the 
major hematopoietic organs containing hematopoietic stem cells which 
are able to be fractionated as side population (SP) cells, and can give rise 
to all lines of hematopoietic differentiation including erythropoiesis, 
granulopoiesis, and lymphopoiesis [40,41]. Finally, it was also reported 
that adult skeletal muscle too contains HSCs and HPCs [21,23].

HSCs in adult skeletal muscle were first discovered by Gussoni et al. 
[21]. Gussoni et al. [21] purified SP cells positive for HSC marker Sca-
1 from adult skeletal muscle, intravenously injected these muscle SP 
cells into lethally irradiated mice, and observed whole hematopoietic 
contribution in the recipient mice. These resultant data strongly 
indicated that muscle SP fraction contains HSCs. SP cells exclude 
Hoechst 33342 DNA-binding dye through the activity at the cell surface 
of multi-drug resistance (MDR) pomp proteins such as ABCG2/
BCRP1(see in review) [1], which was first reported by Goodell et al. [42]. 
They also discovered that HSCs in bone marrow from many different 
species can be isolated as SP cells by fluorescence activated cell sorting 
(FACS). In vitro hematopoietic colony formation assays confirmed that 
adult muscle contains a remarkably high level of HPCs that differentiate 
into multiple types of hematopoietic colonies including myeloid cells, 
B cells and erythrocytes (see in review) [1,26,30,34,40,43,44]. These 
muscle-derived HPCs can also be enriched in the muscle SP fraction 
as they are in bone marrow-derived SP cells [30,34,40,43]. In addition, 
only CD45(+) muscle-derived cells display the capacity to give rise to 
hematopoietic cells in vitro and reconstitute the entire hematopoietic 
repertoire following intravenous injection into lethally irradiated 
mice [1,21,24,45], strongly indicating that muscle-derived HSCs and 
HPCs are indeed of bone-marrow origin. Therefore, circulating HSCs 
and HPCs originating from bone marrow may reside within skeletal 
muscle during developmental stages. In this case, marrow-derived 
cells migrate into skeletal muscle via activity of hepatocyte growth 
factor (HGF) and its receptor, c-met [46]. Interestingly, Single-cell-
sorted muscle SP/CD45(+) cells displayed robust proliferative activity 
[29]. These amplified clonal cell populations displayed multilineage 
differentiation capability, including myeloid, lymphoid and NK cells. 
Therefore, similar to bone marrow-derived cells, a single cell in muscle-
derived hematopoietic cells exhibits major proliferative potential and 
multi-lineage differentiation capability.

With the current understanding of muscle-related hematopoietic 
status, there are several intriguing questions. 1) How does the muscle 
niche maintain HSCs/HPCs that possess such a remarkable capability 
for hematopoietic differentiation potential? 2) Can muscle-derived 
HSCs/HPCs contribute to muscle regeneration through their direct 
myogenic differentiation? 3) Can bone marrow-derived HSCs/HPCs 
contribute to regenerating muscle fibers through their direct myogenic 
differentiation? 

For the muscle niche, a recent paper showed that HPCs occurred 
in cachectic muscle with a statistically significant enrichment in Sca-

1(+) CD45(+) [47]. Since HSC recruitment is stimulated by muscle 
injury or other insults [48-50], this phenomenon can be interpreted 
as a response to signals released by the atrophying fibers to maintain 
HPCs. Muscle-derived HSCs/HPCs must be abundant in muscle 
on a whole body basis since muscle is the largest tissue set in the 
body. Interestingly, Tsuboi et al. demonstrates that frequency of 
hematopoietic stem cells in human muscle is approximately four times 
greater than in peripheral blood, suggesting an additional function of 
human skeletal muscle as a reservoir of HSCs [51]. The presence of 
HSCs/HPCs in adult muscle raises the possibility that such stem cells 
locally contribute to host myogenesis when exposed to the correct 
environment during regeneration. In addition, an interesting question 
is to what extent non-satellite cells, including muscle-derived HSCs 
and HPCs, can contribute to regenerating muscle fibers in normal 
and diseased muscle. Recent work clearly demonstrates that the 
muscle-derived HSCs/HPCs have been shown to possess myogenic 
potential, and to contribute to muscle repair by low-level fusion into 
multinucleated muscle fibers. Regenerative signals in the muscle recruit 
resident muscle-derived HSCs or HPCs to progress down a myogenic 
lineage through Wnt signaling and subsequent Pax7 expression 
[49,52], indicating the participation of muscle-derived HSCs/HPCs in 
myogenic regeneration.

Myogenic Contribution of HSCs
Currently, muscle-derived HSCs/HPCs are believed to originate 

from bone marrow and probably from homing cells of circulating 
HSCs/HPCs. Several papers have demonstrated the myogenic 
contribution of bone marrow-derived HSCs/HPCs after intramuscular 
or intravenous transplantation [21,50,53-64] . Strikingly, single HSC 
transplantation into lethally irradiated mice demonstrates the clear 
myogenic contribution of HSCs through intermediate stage myeloid 
cell differentiation of the engrafted HSCs [56,60-68]. In these cases, 
the ongoing muscle regeneration and inflammatory cell infiltration are 
required for HSC-derived contribution. Interestingly, bone marrow-
derived CD45(+)/Sca-1(+) cells carrying reporter genes controlled by 
muscle-specific regulatory elements from the Myf5, myosin light chain 
(MLC3F), or MCK genes, are induced by myoblasts to activate muscle-
specific genes [69]. However, these cells undergo incomplete myogenic 
specification and differentiation independently from Pax7 and 
MyoD. Analysis of muscle chimerism in unirradiated animals joined 
surgically by parabiosis revealed that contributions of circulating 
cells to myofibers in the skeletal muscle are injury-dependent and 
that at least some circulating cells have the potential to contribute to 
regenerating muscle derived from bone marrow [48]. There are two 
potential mechanisms for the adoption of a myogenic differentiation 
fate by the progeny of HSCs. First, myogenic differentiation potential 
of HSCs could be induced by local muscle environments. Alternatively, 
the formation of heterokaryons between HSCs and myoblasts and/or 
regenerating muscle fibers through cell fusion could lead to nuclear 
reprogramming [60]. Latter case is most likely since circulating HSC-
derived myeloid progenitor cells, in response to inflammatory cues, 
migrate to regenerating skeletal muscle and stochastically incorporate 
into mature myofibers possibly by direct cell fusion process. Potential 
mechanism for fusion process of myeloid cells may be mediated by 
the fusogenic ability of macrophages [56]. However, more primitive 
HSC derivatives, such as myelomonocytic progenitors, but not CD11b-
Cre-positive macrophages, neutrophils and natural killer cells, can 
incorporate into regenerating muscle fibers [68]. Therefore, in the 
future, the exact mechanism for this heterokaryon formation should 
be elucidated.
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The Kuwana et al. [70] reported the discovery of a primitive cell 
population termed monocyte-derived multipotential cells (MOMCs), 
which has a fibroblast-like morphology in culture and a unique 
phenotype positive for CD14, CD45, CD34 and type I collagen, and were 
found to originate from HSC-derived circulating CD14(+) monocytes. 
MOMCs contain progenitors with capacity to differentiate into a 
variety of nonphagocytes, including bone, cartilage, fat, skeletal and 
cardiac muscle, neuron, and endothelium, indicating the involvement 
of MOMCs in repair and regeneration of the damaged tissue [70,71]. 
Currently, several studies have cautioned us about the potential of 
bone marrow-derived HSCs/HPCs for muscle regeneration [48,72-
74]. In addition, bone marrow-derived cells isolated from Tie2-GFP 
mice do not engraft into skeletal muscle microvasculature but promote 
angiogenesis after acute injury [75]. Furthermore, recent experiments 
using transgenic mice for developmental and conditional Pax7 gene 
knockout strongly indicates that satellite cells are a major cell source 
for the postnatal muscle regeneration [76,77].

Tissue Resident HSCs
Many adult tissues besides skeletal muscle, such as brain, heart, 

lung, kidney, and small intestine contain different amounts of HSCs 
and/or HPCs that can be also enriched in the CD45(+) and SP fraction 
[30,34]. Therefore, the HSCs and/or HPCs are normal residents in 
many adult tissues and might contribute to tissue regeneration. It 
should be elucidated whether other adult tissue-derived HSCs/HPCs 
also exhibit the potential of hematopoietic reconstitution of irradiated 
mice. In vitro hematopoietic colony forming assays demonstrate that 
bone marrow, skeletal muscle, spleen and liver appear to contain 
more undifferentiated multipotential myeloid progenitors than the 
other tissues (brain, heart, lung, kidney, and small intestine), which 
contain more committed myeloid progenitors, such as macrophages 
and granulocytes [1,30,34]. This observation implies that there are 
unique characteristics about the skeletal muscle niche that allows it 
to support the survival and maintenance of HSCs/HPCs. Comparison 
of mRNA levels in skeletal muscle- and fat tissue-derived CD45(+)
SP cells revealed that although they expressed many of the same 
genes including hematopoietic markers (CD45, CD34, CD14, CD68, 
Thy-1, VCAM-1 and Sca-1) and other genes (Notch, Cdkn1a/p21, 
Hes1 and Akt1), fat tissue-derived CD45(+) SP cells expressed higher 
levels of c-kit, whereas muscle-derived CD45(+) SP cells possessed a 
clear enrichment for several endothelial specific transcripts such as 
(Endoglin, VE-cadhein, Caveolin-1, ABCG2, PECAM and Flk-1) and 
other genes (Jag1 and Sparc/Osteonectin), indicating that muscle-
derived CD45(+) SP cells are distinct from those isolated from fat 
tissue. Thus, CD45(+) SP cells do not simply represent a common 
pool of circulating progenitors, but seems to possess characteristics 
likely specified by the tissue niche in which they reside [78]. Recent 
work demonstrates that stem cells are closely associated with vascular 
niche in the tissues. For example, satellite cells are positioned in a 
juxtavascular manner while reciprocally interacting with endothelial 
cells during differentiation to support angio-myogenesis [79,80]. In 
addition, HSCs reside in a perivascular niche (endothelial cells and 
perivascular stromal cells) in which multiple cell types express factors 
that promote HSC maintenance [81]. 

DMD Therapy by Bone Marrow Transplantation
In considering translational research of angiogenic and myogenic 

progenitors, biological relevance in treating muscle dystrophies is 
a sought after bridge to clinical application. Duchenne Muscular 
Dystrophy (DMD) is the most common muscular dystrophy in which 

mutations are found in the dystrophin gene that encodes the primary 
membrane anchor protein essential for skeletal muscle stability [82]. 
Definitive skeletal muscle treatment for muscular dystrophy will 
then likely require restoration of the dystrophin protein complex in 
all affected muscle groups. One promising approach used to restore 
dystrophin and regenerate muscle fibers is cell therapy. Looking at the 
summary of the current state of understanding for cell therapies, bone 
marrow or HSCs/HPCs transplantation is the potential therapeutic 
approach for treating muscular dystrophy. With the capacity of this 
therapy many groups have examined transplantation of bone marrow-
derived cells into muscular dystrophy animal models. As a result, 
several papers showed some contributions of bone marrow-derived 
cell transplantation to skeletal muscle fibers in several muscular 
dystrophy model and spinal muscular atrophy model mice [21,83-92], 
while other papers reported negative results [72,93,94]. Interestingly, 
the Gussoni et al. [95] reported the analysis of muscle biopsies from a 
DMD patient who received bone marrow transplantation at age 1 year 
for severe combined immune deficiency. Analysis of muscle biopsies 
from this patient at age 12 years revealed the presence of donor nuclei 
within a small number of muscle myofibers (0.5-0.9%), indicating 
the contribution of donor-derived bone marrow cells to DMD host 
muscle fibers [95]. In addition, bone marrow transplantation in a 
human patient with Diamond-Blackfan anemia and co-existing DMD 
demonstrated that in a patient with 100% donor chimerism of the 
hematopoietic system, muscle tissue presented 8% to 10.4% of cells 
being of donor origin, indicating promising effects for bone marrow 
transplantation to muscular dystrophy [96].

The muscle-derived HSCs/HPCs are capable of differentiation 
into hematopoietic cells in vitro and in vivo, and thus these muscle-
derived HSCs/HPCs appear to have characteristics similar to classical 
hematopoietic stem/progenitor cells found in bone marrow. Clearly, 
further experimentation is required to investigate the origin, biological 
significance and the cellular niche for the HSCs/HPCs within non-
hematopoietic tissues. A new and encouraging route in this investigation 
is the possibility to find wider application for the use of muscle-derived 
and/or bone marrow-derivedHSCs/HPCs as a potential cell therapy for 
muscular dystrophy.
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